Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Closed-form solution for thin lens image irradiance under arbitrary solid angle

Abstract

Optical imaging systems are found everywhere in modern society. They are integral to computer vision, where the goal is often to infer geometric and radiometric information about a 3D environment given limited sensing resources. It is helpful to develop relationships between these real-world properties and the actual measurements that are taken, such as 2D images. To this end, we propose a new relationship between object radiance and image irradiance based on power conservation and a thin lens imaging model. The relationship has a closed-form solution for in-focus points and can be solved via numerical integration for points that are not focused. It can be thought of as a generalization of Horn’s commonly accepted irradiance equation. Through both ray tracing simulations and comparison to the intensity values of actual images, we believe our equation provides better accuracy than Horn’s equation. An improvement is most notable for large lenses and near-focused images where the pinhole imaging model implicit in Horn’s derivation breaks down. Outside of this regime, our model validates the use of Horn’s approximation through a more thorough theoretical foundation.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Passive non-line-of-sight imaging using plenoptic information

Di Lin, Connor Hashemi, and James R. Leger
J. Opt. Soc. Am. A 37(4) 540-551 (2020)

Light field reconstruction from scattered light using plenoptic data

Takahiro Sasaki and James R. Leger
J. Opt. Soc. Am. A 37(4) 653-670 (2020)

Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium

Harold T. Yura, Lars Thrane, and Peter E. Andersen
J. Opt. Soc. Am. A 17(12) 2464-2474 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.