Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Subtraction method via phase mask enables contrast enhancement in scanned Bessel light-sheet microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We report on the generation of a hollow Bessel beam with a hole along the direction of propagation by using an easy-to-implement phase mask and investigate its effectiveness to reduce the out-of-focus background in light-sheet fluorescence microscopy (LSFM) with scanned Bessel beams by subtraction imaging. Overlaying ${\pi }$-phase retardation between the two equal parts of the Bessel beam across the entrance pupil of the objective lens, a hollow Bessel beam with zero intensity at the focal plane can be achieved. By optimizing the numerical aperture of the annular mask applied in the hollow Bessel beam, matched distributions of the ring system between the hollow Bessel beam and the conventional Bessel beam are achieved. By subtraction between the two LSFM images, the out-of-focus blur caused by the ring system of the Bessel beam can be significantly reduced. Comparison with conventional Bessel LSFM images exhibits a better sectioning capability and higher contrast.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Axial resolution enhancement for planar Airy beam light-sheet microscopy via the complementary beam subtraction method

Chao Liu, Xianghua Yu, Chen Bai, Xing Li, Yuan Zhou, Shaohui Yan, Junwei Min, Dan Dan, Runze Li, Shuangyu Gu, and Baoli Yao
Appl. Opt. 60(32) 10239-10245 (2021)

Enhanced axial resolution of lattice light sheet microscopy by fluorescence differential detection

Yanhong Gan, Ye Ma, Wenwen Gong, Wenjie Liu, Ziang Wang, Xiang Hao, Yubing Han, Cuifnag Kuang, and Xu Liu
Opt. Express 30(15) 27381-27394 (2022)

Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation

Florian O. Fahrbach, Vasily Gurchenkov, Kevin Alessandri, Pierre Nassoy, and Alexander Rohrbach
Opt. Express 21(11) 13824-13839 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved