Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Supernumerary bows: interference theory with the zero wavefront as a basic element

Not Accessible

Your library or personal account may give you access

Abstract

This study relates to the prediction of the angular positions of supernumerary screenbows and rainbows, in the case of a refractive sphere illuminated by a point source placed at a distance of h from its center; for h, the incident light beam becomes parallel. The screenbow appears on a spherical screen whose center is that of the sphere and which intercepts the tangential caustic surface. The rainbow, specific to the water drop, but here generalized to any refractive sphere, corresponds to a screenbow produced on a “screen” placed at an infinite distance. This paper uses exact graphical representations of the wavefronts associated with rainbows resulting from k internal reflections to illustrate how the angular positions of the supernumerary rainbows and the positions of the corresponding supernumerary bows on screens are to be calculated. All considerations are made within the framework of geometrical optics being, on the one hand, the limit of the electromagnetic theory as the wavelength goes to 0, and, on the other hand, complemented by the Gouy phase shift theory.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Refractive sphere and light point source: shortcut to the zero wavefronts

Paul-Étienne Ouellette
J. Opt. Soc. Am. A 36(9) 1559-1565 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.