Abstract

Experimental visual acuity (VA) of eight subjects was measured using the Freiburg vision test in a custom-made adaptive optics system. Measurements were conducted under one control and five defocus-induced conditions. In the defocus-induced conditions, 1 diopter of myopic defocus was added to the system using the Badal stage, and defocus vibrations with five different levels of amplitude were generated by a deformable mirror at 50 Hz. Computational simulations of the visual Strehl ratio (VSOTF) were performed using average aberrations of each subject recorded in the control condition. For the first time, to the best of our knowledge, it has been shown experimentally that both the simulated VSOTF and experimentally measured VA improve when defocus vibrations are added to a defocused eye.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-range adaptive optics visual simulator with a tunable lens

Nikolai Suchkov, Enrique J. Fernández, and Pablo Artal
J. Opt. Soc. Am. A 36(5) 722-730 (2019)

Predicting the effects of optical defocus on human contrast sensitivity

David A. Atchison, Russell L. Woods, and Arthur Bradley
J. Opt. Soc. Am. A 15(9) 2536-2544 (1998)

Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics

Enrique J. Fernández and Pablo Artal
J. Opt. Soc. Am. A 22(9) 1732-1738 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Helmholtz, Popular Lectures on Scientific Subjects (D. Appleton and Company, 1885).
  2. H. Deubel and B. Bridgeman, “Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vis. Res. 35, 529–538 (1995).
    [Crossref]
  3. W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35, 476–499 (2015).
    [Crossref]
  4. M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57, 373–383 (2010).
    [Crossref]
  5. A. W. Lohman and D. P. Paris, “Influence of longitudinal vibrations on image quality,” Appl. Opt. 4, 393–398 (1965).
    [Crossref]
  6. D. R. Iskander, “Signal processing in visual optics,” IEEE Signal Process. Mag. 31(4), 155–158 (2014).
    [Crossref]
  7. H. Nowicka and D. R. Iskander, “Potential of longitudinal vibrations in the human eye,” in Proceedings of the 7th European/1st World Meeting in Visual and Physiological Optics (VPOptics), Wrocław, Poland (2014), pp. 230–233.
  8. A. B. Castaño-Fernandez, A. Martínez-Finkelshtein, and D. R. Iskander, “A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront,” Opt. Appl. 48, 201 (2018).
    [Crossref]
  9. E. Papadatou, A. J. Del Águila-Carrasco, I. Marín-Franch, and N. López-Gil, “Temporal multiplexing with adaptive optics for simultaneous vision,” Biomed. Opt. Express 7, 4102–4113 (2016).
    [Crossref]
  10. D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
    [Crossref]
  11. M. Bach, “The Freiburg visual acuity test-automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
    [Crossref]
  12. M. Bach, “The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 965–971 (2007).
    [Crossref]
  13. M. Kalloniatis and C. Luu, “Temporal resolution,” in Webvision: The Organization of the Retina and Visual System, H. Kolb, E. Fernandez, and R. Nelson, eds. (University of Utah Health Sciences Center, 1995).
  14. D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83, 57–59 (2006).
    [Crossref]
  15. J. Schwiegerling, “Scaling pseudo-Zernike expansion coefficients to different pupil sizes,” Opt. Lett. 36, 3076 (2011).
    [Crossref]
  16. F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4): 3, 1–9 (2010).
    [Crossref]
  17. American National Standards Institute, American National Standard for Ophthalmics: Methods for Reporting Optical Aberrations of Eyes, (Optical Laboratories Association, 2004).
  18. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
    [Crossref]
  19. M. M. Bartuzel and D. R. Iskander, “The impact of higher order wavefront aberrations dynamics on instantaneous retinal image quality,” Invest. Ophthalmol. Vis. Sci. 59, 5798 (2018).
  20. G. G. Heath, “The influence of visual acuity on the accommodative response of the eye,” Am. J. Opt. 33, 513–524 (1956).
    [Crossref]
  21. L. N. Thibos, A. Bradley, and N. López-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiol. Opt. 33, 482–496 (2013).
    [Crossref]
  22. N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
    [Crossref]
  23. P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
    [Crossref]
  24. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 7 (2005).
    [Crossref]
  25. J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
    [Crossref]
  26. M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 26(5), 439–446 (2006).
    [Crossref]
  27. Y. Jiang, Y. Wang, J. Zhang, X. Chen, L. Li, H. Zhao, R. Wang, and Y. Dai, “Dynamic changes in higher-order aberrations after correction of lower-order aberrations with adaptive optics in myopic and emmetropic eyes,” Appl. Opt. 57(3), 514–520 (2018).
    [Crossref]

2018 (4)

A. B. Castaño-Fernandez, A. Martínez-Finkelshtein, and D. R. Iskander, “A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront,” Opt. Appl. 48, 201 (2018).
[Crossref]

M. M. Bartuzel and D. R. Iskander, “The impact of higher order wavefront aberrations dynamics on instantaneous retinal image quality,” Invest. Ophthalmol. Vis. Sci. 59, 5798 (2018).

J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
[Crossref]

Y. Jiang, Y. Wang, J. Zhang, X. Chen, L. Li, H. Zhao, R. Wang, and Y. Dai, “Dynamic changes in higher-order aberrations after correction of lower-order aberrations with adaptive optics in myopic and emmetropic eyes,” Appl. Opt. 57(3), 514–520 (2018).
[Crossref]

2016 (1)

2015 (1)

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35, 476–499 (2015).
[Crossref]

2014 (2)

D. R. Iskander, “Signal processing in visual optics,” IEEE Signal Process. Mag. 31(4), 155–158 (2014).
[Crossref]

P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
[Crossref]

2013 (1)

L. N. Thibos, A. Bradley, and N. López-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiol. Opt. 33, 482–496 (2013).
[Crossref]

2011 (1)

2010 (3)

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4): 3, 1–9 (2010).
[Crossref]

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref]

M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57, 373–383 (2010).
[Crossref]

2007 (1)

M. Bach, “The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 965–971 (2007).
[Crossref]

2006 (2)

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83, 57–59 (2006).
[Crossref]

M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 26(5), 439–446 (2006).
[Crossref]

2005 (2)

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 7 (2005).
[Crossref]

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
[Crossref]

2002 (1)

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[Crossref]

1996 (1)

M. Bach, “The Freiburg visual acuity test-automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
[Crossref]

1995 (1)

H. Deubel and B. Bridgeman, “Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vis. Res. 35, 529–538 (1995).
[Crossref]

1965 (1)

1956 (1)

G. G. Heath, “The influence of visual acuity on the accommodative response of the eye,” Am. J. Opt. 33, 513–524 (1956).
[Crossref]

Artal, P.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[Crossref]

Atchison, D. A.

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
[Crossref]

Bach, M.

M. Bach, “The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 965–971 (2007).
[Crossref]

M. Bach, “The Freiburg visual acuity test-automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
[Crossref]

Bartuzel, M. M.

M. M. Bartuzel and D. R. Iskander, “The impact of higher order wavefront aberrations dynamics on instantaneous retinal image quality,” Invest. Ophthalmol. Vis. Sci. 59, 5798 (2018).

Benito, A.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[Crossref]

Bernal-Molina, P.

P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
[Crossref]

Bradley, A.

L. N. Thibos, A. Bradley, and N. López-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiol. Opt. 33, 482–496 (2013).
[Crossref]

Bridgeman, B.

H. Deubel and B. Bridgeman, “Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vis. Res. 35, 529–538 (1995).
[Crossref]

Castaño-Fernandez, A. B.

A. B. Castaño-Fernandez, A. Martínez-Finkelshtein, and D. R. Iskander, “A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront,” Opt. Appl. 48, 201 (2018).
[Crossref]

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[Crossref]

Charman, W. N.

J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
[Crossref]

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35, 476–499 (2015).
[Crossref]

Chen, X.

Collins, M. J.

M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57, 373–383 (2010).
[Crossref]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4): 3, 1–9 (2010).
[Crossref]

M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 26(5), 439–446 (2006).
[Crossref]

Dai, Y.

Del Águila-Carrasco, A. J.

Deubel, H.

H. Deubel and B. Bridgeman, “Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vis. Res. 35, 529–538 (1995).
[Crossref]

Fernández-Sánchez, V.

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref]

Fisher, S. W.

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
[Crossref]

Ginis, H. S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 7 (2005).
[Crossref]

Heath, G. G.

G. G. Heath, “The influence of visual acuity on the accommodative response of the eye,” Am. J. Opt. 33, 513–524 (1956).
[Crossref]

Helmholtz, H.

H. Helmholtz, Popular Lectures on Scientific Subjects (D. Appleton and Company, 1885).

Heron, G.

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35, 476–499 (2015).
[Crossref]

Iskander, D. R.

M. M. Bartuzel and D. R. Iskander, “The impact of higher order wavefront aberrations dynamics on instantaneous retinal image quality,” Invest. Ophthalmol. Vis. Sci. 59, 5798 (2018).

A. B. Castaño-Fernandez, A. Martínez-Finkelshtein, and D. R. Iskander, “A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront,” Opt. Appl. 48, 201 (2018).
[Crossref]

D. R. Iskander, “Signal processing in visual optics,” IEEE Signal Process. Mag. 31(4), 155–158 (2014).
[Crossref]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4): 3, 1–9 (2010).
[Crossref]

M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57, 373–383 (2010).
[Crossref]

M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 26(5), 439–446 (2006).
[Crossref]

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83, 57–59 (2006).
[Crossref]

H. Nowicka and D. R. Iskander, “Potential of longitudinal vibrations in the human eye,” in Proceedings of the 7th European/1st World Meeting in Visual and Physiological Optics (VPOptics), Wrocław, Poland (2014), pp. 230–233.

Jiang, Y.

Kalloniatis, M.

M. Kalloniatis and C. Luu, “Temporal resolution,” in Webvision: The Organization of the Retina and Visual System, H. Kolb, E. Fernandez, and R. Nelson, eds. (University of Utah Health Sciences Center, 1995).

Legras, R.

P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
[Crossref]

Li, L.

Lohman, A. W.

López-Gil, N.

J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
[Crossref]

E. Papadatou, A. J. Del Águila-Carrasco, I. Marín-Franch, and N. López-Gil, “Temporal multiplexing with adaptive optics for simultaneous vision,” Biomed. Opt. Express 7, 4102–4113 (2016).
[Crossref]

P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
[Crossref]

L. N. Thibos, A. Bradley, and N. López-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiol. Opt. 33, 482–496 (2013).
[Crossref]

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[Crossref]

Luu, C.

M. Kalloniatis and C. Luu, “Temporal resolution,” in Webvision: The Organization of the Retina and Visual System, H. Kolb, E. Fernandez, and R. Nelson, eds. (University of Utah Health Sciences Center, 1995).

Marín-Franch, I.

Martínez-Finkelshtein, A.

A. B. Castaño-Fernandez, A. Martínez-Finkelshtein, and D. R. Iskander, “A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront,” Opt. Appl. 48, 201 (2018).
[Crossref]

Montés-Micó, R.

P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
[Crossref]

Muma, M.

M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57, 373–383 (2010).
[Crossref]

Nowicka, H.

H. Nowicka and D. R. Iskander, “Potential of longitudinal vibrations in the human eye,” in Proceedings of the 7th European/1st World Meeting in Visual and Physiological Optics (VPOptics), Wrocław, Poland (2014), pp. 230–233.

Pallikaris, A.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 7 (2005).
[Crossref]

Papadatou, E.

Paris, D. P.

Pedersen, C. A.

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
[Crossref]

Plainis, S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 7 (2005).
[Crossref]

Radhakrishnan, H.

J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
[Crossref]

Ridall, P. G.

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
[Crossref]

Schwiegerling, J.

Thibos, L. N.

L. N. Thibos, A. Bradley, and N. López-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiol. Opt. 33, 482–496 (2013).
[Crossref]

Wang, R.

Wang, Y.

Yi, F.

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4): 3, 1–9 (2010).
[Crossref]

Zapata-Díaz, J. F.

J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
[Crossref]

Zhang, J.

Zhao, H.

Zhu, M.

M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 26(5), 439–446 (2006).
[Crossref]

Am. J. Opt. (1)

G. G. Heath, “The influence of visual acuity on the accommodative response of the eye,” Am. J. Opt. 33, 513–524 (1956).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

M. Bach, “The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 965–971 (2007).
[Crossref]

IEEE Signal Process. Mag. (1)

D. R. Iskander, “Signal processing in visual optics,” IEEE Signal Process. Mag. 31(4), 155–158 (2014).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57, 373–383 (2010).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

M. M. Bartuzel and D. R. Iskander, “The impact of higher order wavefront aberrations dynamics on instantaneous retinal image quality,” Invest. Ophthalmol. Vis. Sci. 59, 5798 (2018).

J. Optom. (1)

J. F. Zapata-Díaz, H. Radhakrishnan, W. N. Charman, and N. López-Gil, “Accommodation and age-dependent eye model based on in vivo measurements,” J. Optom. 12, 3–13 (2018).
[Crossref]

J. Vis. (3)

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 7 (2005).
[Crossref]

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4): 3, 1–9 (2010).
[Crossref]

Ophthalmic Physiol. Opt. (3)

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35, 476–499 (2015).
[Crossref]

L. N. Thibos, A. Bradley, and N. López-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiol. Opt. 33, 482–496 (2013).
[Crossref]

M. Zhu, M. J. Collins, and D. R. Iskander, “The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 26(5), 439–446 (2006).
[Crossref]

Opt. Appl. (1)

A. B. Castaño-Fernandez, A. Martínez-Finkelshtein, and D. R. Iskander, “A semi-analytic approach to calculating the Strehl ratio for a circularly symmetric system. Part 2: dynamic wavefront,” Opt. Appl. 48, 201 (2018).
[Crossref]

Opt. Lett. (1)

Optom. Vis. Sci. (3)

M. Bach, “The Freiburg visual acuity test-automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
[Crossref]

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83, 57–59 (2006).
[Crossref]

P. Bernal-Molina, R. Montés-Micó, R. Legras, and N. López-Gil, “Depth-of-field of the accommodating eye,” Optom. Vis. Sci. 91, 1208–1214 (2014).
[Crossref]

Vis. Res. (3)

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[Crossref]

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vis. Res. 45, 1967–1974 (2005).
[Crossref]

H. Deubel and B. Bridgeman, “Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vis. Res. 35, 529–538 (1995).
[Crossref]

Other (4)

H. Helmholtz, Popular Lectures on Scientific Subjects (D. Appleton and Company, 1885).

H. Nowicka and D. R. Iskander, “Potential of longitudinal vibrations in the human eye,” in Proceedings of the 7th European/1st World Meeting in Visual and Physiological Optics (VPOptics), Wrocław, Poland (2014), pp. 230–233.

American National Standards Institute, American National Standard for Ophthalmics: Methods for Reporting Optical Aberrations of Eyes, (Optical Laboratories Association, 2004).

M. Kalloniatis and C. Luu, “Temporal resolution,” in Webvision: The Organization of the Retina and Visual System, H. Kolb, E. Fernandez, and R. Nelson, eds. (University of Utah Health Sciences Center, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the custom-made adaptive optics system (MurciAO). Lenses L1, L2, L3, L4, and L6 are achromatic doublets. Lenses L5 and L7 are singlets. M1, M2, M3, and M4 are flat silver mirrors. BS is a pellicle beam splitter. DM is a deformable mirror. Blue stars denote conjugated planes.
Fig. 2.
Fig. 2. Blue curves show a classical through-focus VSOTF curve. Exemplary simulations presented are (a) a trapezoidal function with an amplitude of 1 D simulating defocus vibrations without a defocus offset (orange) and with a 1 D defocus offset (green); (b) a trapezoidal function with an amplitude of 0.75 D is simulating defocus vibrations with a defocus offset of 1 D. Empty circular marks represent VSOTF values at an appropriate defocus level, when no defocus vibrations occur. Arrows indicate the change in VSOTF values at those points when defocus vibrations are applied. The increase in the VSOTF value in (b) is smaller than in the case of 1 D amplitude of defocus vibrations in (a).
Fig. 3.
Fig. 3. Left panel: box plots of VA measurements for all subjects in each condition A–F. Red horizontal bars show the median value for each condition, and red dots show outliers. The blue box plot shows the distribution of VA at the far point, whereas the green box plots show the distributions of VA at 1 D beyond the subjects’ far points and five different amplitudes of vibrations. Right panel: photographs of a Landolt C chart taken with a digital camera for illustrative purposes. Degradation of the image is visible when a static defocus of 1 D is introduced (A and B). The image gradually improves with the increase of the amplitude of vibrations (B to F).
Fig. 4.
Fig. 4. Baseline higher-order aberrations of all the subjects. The error bars show ± 1 standard deviation.
Fig. 5.
Fig. 5. Simulation of a VSOTF in the presence of defocus vibrations. In this example, a trapezoidal function was used to simulate defocus vibrations. (a) A three-dimensional plot of a VSOTF as a function of defocus and amplitude of defocus vibrations. The blue continuous curve is a classical through-focus VSOTF when there are no defocus vibrations. The red curve is a through-focus VSOTF when the amplitude of vibrations is equal to 1 D. The green curve shows how the VSOTF improves with the increase of amplitude of vibrations when 1 D of a static defocus is added. (b) A side view showing VSOTF as a function of defocus. (c) A side view showing VSOTF as a function of amplitude of defocus vibrations. Green triangles represent points of the experimental VA measurements, and their results are shown in Fig. 3.
Fig. 6.
Fig. 6. Experimental VA measurements versus VSOTF simulations using the trapezoidal function employed by the deformable mirror. Blue empty circles show VA for the control condition, green empty circles show VA for the condition with 1 D without vibrations, and the solid circles show VA for the rest of experimental conditions.
Fig. 7.
Fig. 7. Optical system with periodically vibrating defocus. The frequency of vibrations in this example is 50 Hz. Two cases are considered: the orange curve and lines represent a system that has no defocus offset; the green curve and lines represent a system that has a defocus offset of 1 D. Larger time, on average, is spent in the range of 0–0.25 D assumed as the in-focus range (blue zone) in the presence of a 1 D defocus in the sinusoidal (a) of trapezoidal (b) vibration functions. A larger number of dots on the green line also indicate that the increasing of the in-focus time effect is more evident in the trapezoidal defocus vibration (b) than in the sinusoidal one (a).

Metrics