Abstract

The high spectral redundancy of hyper/ultraspectral Earth-observation satellite imaging raises three challenges: (a) to design accurate noise estimation methods, (b) to denoise images with very high signal-to-noise ratio (SNR), and (c) to secure unbiased denoising. We solve (a) by a new noise estimation, (b) by a novel Bayesian algorithm exploiting spectral redundancy and spectral clustering, and (c) by accurate measurements of the interchannel correlation after denoising. We demonstrate the effectiveness of our method on two ultraspectral Earth imagers, IASI and IASI-NG, one flying and the other in project, and sketch the major resolution gain of future instruments entailed by such unbiased denoising.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral image denoising using the robust low-rank tensor recovery

Chang Li, Yong Ma, Jun Huang, Xiaoguang Mei, and Jiayi Ma
J. Opt. Soc. Am. A 32(9) 1604-1612 (2015)

Graph-regularized tensor robust principal component analysis for hyperspectral image denoising

Yongming Nie, Linsen Chen, Hao Zhu, Sidan Du, Tao Yue, and Xun Cao
Appl. Opt. 56(22) 6094-6102 (2017)

A sensor-data-based denoising framework for hyperspectral images

Ferdinand Deger, Alamin Mansouri, Marius Pedersen, Jon Y. Hardeberg, and Yvon Voisin
Opt. Express 23(3) 1938-1950 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription