Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Discrete spherical harmonics method for radiative transfer in scalar planar inhomogeneous atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

The radiative transfer problems in a participating inhomogeneous scalar planar atmosphere, subjected to diffuse or collimated incidence, are investigated using the discrete spherical harmonics method. In developing the method, the radiative intensity is expanded in a finite series of Legendre polynomials and the resulting first-order coupled differential equations of radiance moments are expressed in a set of discrete polar directions. The method is applied to homogeneous/inhomogeneous atmospheres of various anisotropic scattering degrees and thicknesses, and reflective boundary conditions. The discrete spherical harmonics method albedo, transmittance, and radiative intensity predictions agree well with benchmark literature results. Additionally, numerical predictions show that the discrete spherical harmonics method using Mark boundary conditions are more efficient than using Marshak boundary conditions.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Bidirectional transmittance and reflectance models for soil signature analysis

Romuald Tapimo, Cipriani Carlos Atemkeng, Herve Thierry Tagne Kamdem, Myriam Lazard, David Yemele, Rene Tchinda, and Edouard Henri Zefack Tonnang
Appl. Opt. 58(8) 1924-1932 (2019)

Radiative transfer in inhomogeneous stratified scattering media with use of the auxiliary function method

Mady Elias and Georges Elias
J. Opt. Soc. Am. A 21(4) 580-589 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.