Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave

Not Accessible

Your library or personal account may give you access

Abstract

In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F12 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Vectorial spherical-harmonics representation of an inhomogeneous elliptically polarized plane wave

F. Frezza and F. Mangini
J. Opt. Soc. Am. A 32(7) 1379-1383 (2015)

Mie-scattering formalism for spherical particles embedded in an absorbing medium

I. Wayan Sudiarta and Petr Chylek
J. Opt. Soc. Am. A 18(6) 1275-1278 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (90)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.