Abstract

Multifunctional cameras capable of performing a wide variety of nearly simultaneous imaging tasks are expected to play a major role in the near future. Computational imaging (CI) systems will serve as one of the main enabling technologies for multifunctional cameras, especially due to the abundance of low-cost, high-speed computational processing available today. An important aspect of these systems is to be able to quantify their performance with respect to specific imaging tasks. However, the non-traditional design of CI systems, both available and proposed, presents a considerable challenge to modeling, comparing, specifying, and measuring their performance. To solve this problem, this paper presents a standardized detection signal-to-noise ratio, referred to as a detectivity metric, along with a general CI system framework. This metric has the flexibility to handle various types of CI systems and specific targets while minimizing the complexity and assumptions needed. The detectivity metric is designed to assess the performance of a CI system searching for a specific known target or signal of interest. An analytical version of the detectivity metric is also presented for a compressive sensing CI system. Special considerations for standardization are also discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimentally measuring a detectability index of a computational imaging system

Bradley L. Preece, David Haefner, and George Nehmetallah
Appl. Opt. 58(10) 2446-2455 (2019)

Compressive imaging system design using task-specific information

Amit Ashok, Pawan K. Baheti, and Mark A. Neifeld
Appl. Opt. 47(25) 4457-4471 (2008)

Task-specific information for imaging system analysis

Mark A. Neifeld, Amit Ashok, and Pawan K. Baheti
J. Opt. Soc. Am. A 24(12) B25-B41 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription