Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical modeling of the effect of polymer chain immobilization rates on holographic recording in photopolymers

Not Accessible

Your library or personal account may give you access

Abstract

This paper introduces an improved mathematical model for holographic grating formation in an acrylamide-based photopolymer, which consists of partial differential equations derived from physical laws. The model is based on the two-way diffusion theory of [Appl. Opt. 43, 2900 (2004) [CrossRef]  ], which assumes short polymer chains are free to diffuse, and generalizes a similar model presented in [J. Opt. Soc. Am. B 27, 197 (2010) [CrossRef]  ] by introducing an immobilization rate governed by chain growth and cross-linking. Numerical simulations were carried out in order to investigate the behavior of the photopolymer system for short and long exposures, with particular emphasis on the effect of recording parameters (such as illumination frequency and intensity), as well as material permeability, on refractive index modulation, refractive index profile, and grating distortion. The model reproduces many well-known experimental observations, such as the decrease of refractive index modulation at high spatial frequencies and appearance of higher harmonics in the refractive index profile when the diffusion rate is much slower than the polymerization rate. These properties are supported by a theoretical investigation which uses perturbation techniques to approximate the solution over various time scales.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer

Tsvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, and Vincent Toal
J. Opt. Soc. Am. B 27(2) 197-203 (2010)

Nonlocal-response diffusion model of holographic recording in photopolymer

John T. Sheridan and Justin R. Lawrence
J. Opt. Soc. Am. A 17(6) 1108-1114 (2000)

Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length

Michael R. Gleeson, Dusan Sabol, Shui Liu, Ciara E. Close, John V. Kelly, and John T. Sheridan
J. Opt. Soc. Am. B 25(3) 396-406 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved