Abstract

We explored the color constancy mechanisms of color-deficient observers under red, green, blue, and yellow illuminations. The red and green illuminations were defined individually by the longer axis of the color discrimination ellipsoid measured by the Cambridge Colour Test. Four dichromats (3 protanopes and 1 deuteranope), two anomalous trichromats (2 deuteranomalous observers), and five color-normal observers were asked to complete the color constancy task by making a simultaneous paper match under asymmetrical illuminations in haploscopic view on a monitor. The von Kries adaptation model was applied to estimate the cone responses. The model fits showed that for all color-deficient observers under all illuminations, the adjustment of the S-cone response or blue-yellow chromatically opponent responses modeled with the simple assumption of cone deletion in a certain type (S-M, S-L or S-(L+M)) was consistent with the principle of the von Kries model. The degree of adaptation was similar to that of color-normal observers. The results indicate that the color constancy of color-deficient observers is mediated by the simplified blue-yellow color system with a von Kries-type adaptation effect, even in the case of brightness match, as well as by a possible cone-level adaptation to the S-cone when the illumination produces a strong S-cone stimulation, such as blue illumination.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Possible influences on color constancy by motion of color targets and by attention-controlled gaze

Lifang Wan and Keizo Shinomori
J. Opt. Soc. Am. A 35(4) B309-B323 (2018)

Effects of high-color-discrimination capability spectra on color-deficient vision

Esther Perales, João Manuel Maciel Linhares, Osamu Masuda, Francisco M. Martínez-Verdú, and Sérgio Miguel Cardoso Nascimento
J. Opt. Soc. Am. A 30(9) 1780-1786 (2013)

Color constancy: the role of image surfaces in illuminant adjustment

Karl-Heinz Bäuml
J. Opt. Soc. Am. A 16(7) 1521-1530 (1999)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Foster, “Review: color constancy,” Vis. Res. 51, 674–700 (2011).
    [Crossref]
  2. J. von Kries, “Chromatic adaptation,” in Sources of Color Science, D. L. MacAdam, ed. (MIT, 1970), pp. 145–148.
  3. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [Crossref]
  4. E.-J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vis. Res. 35, 239–254 (1995).
    [Crossref]
  5. D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image: I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
    [Crossref]
  6. K.-H. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
    [Crossref]
  7. K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vis. Res. 39, 1531–1550 (1999).
    [Crossref]
  8. I. Kuriki and K. Uchikawa, “Limitations of surface-color and apparent-color constancy,” J. Opt. Soc. Am. A 13, 1622–1636 (1996).
    [Crossref]
  9. I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
    [Crossref]
  10. J. L. Nieves, A. García-Beltrán, and J. Romero, “Response of the human visual system to variable illuminant conditions: an analysis of opponent-colour mechanisms in colour constancy,” Ophthalmic Physiol. Opt. 20, 44–58 (2000).
    [Crossref]
  11. J. A. Movshon and P. Lennie, “Pattern-selective adaptation in visual cortical neurons,” Nature 278, 850–852 (1979).
    [Crossref]
  12. Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
    [Crossref]
  13. A. Morland, J. MacDonald, and K. Middleton, “Color constancy in acquired and congenital color vision deficiencies,” in John Dalton’s Colour Vision Legacy: Selected Proceedings of the International Conference, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 463–468.
  14. L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
    [Crossref]
  15. D. H. Foster, K. Amano, and S. M. C. Nascimento, “Tritanopic colour constancy under daylight changes?” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 218–224.
  16. K. Amano, D. H. Foster, and S. M. C. Nascimento, “Red-green colour deficiency and colour constancy under orthogonal-daylight changes,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 225–230.
  17. R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
    [Crossref]
  18. R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
    [Crossref]
  19. D. H. Foster and K. J. Linnell, “Evidence for relational colour constancy in red-green colour-deficient human observers,” J. Physiol. 485, 23–24 (1995).
  20. J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
    [Crossref]
  21. J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13):6, 1–16 (2008).
    [Crossref]
  22. P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2), 57–81 (2004).
    [Crossref]
  23. K. Uchikawa, K. Fukuda, Y. Kitazawa, and D. I. A. MacLeod, “Estimating illuminant color based on luminance balance of surfaces,” J. Opt. Soc. Am. A 29, A133–A143 (2012).
    [Crossref]
  24. J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5 (1989).
  25. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
    [Crossref]
  26. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
    [Crossref]
  27. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  28. P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), p. 557.
  29. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [Crossref]
  30. Munsell Color Corporation, Munsell Book of Color—Matte Finish Collection (Munsell Color Corp., 1976).
  31. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [Crossref]
  32. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [Crossref]
  33. H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vis. 4(9), 693–710 (2004).
    [Crossref]
  34. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [Crossref]
  35. L. E. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [Crossref]
  36. L. E. Arend, A. Reeves, J. Schirillo, and R. Goldstein, “Simultaneous color constancy: papers with diverse munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
    [Crossref]
  37. J. M. Troost, L. Wei, and C. M. de Weert, “Binocular measurements of chromatic adaptation,” Vis. Res. 32, 1987–1997 (1992).
    [Crossref]
  38. J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
    [Crossref]
  39. J. Romero, J. A. García, L. J. del Barco, and E. Hita, “Evaluation of color-discrimination ellipsoids in two-color spaces,” J. Opt. Soc. Am. A 10, 827–837 (1993).
    [Crossref]
  40. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vis. Res. 46, 3055–3066 (2006).
    [Crossref]
  41. M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.
  42. K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
    [Crossref]
  43. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [Crossref]
  44. J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
    [Crossref]
  45. P. A. Stanley and A. K. Davies, “The effect of field of view size on steady-state pupil diameter,” Ophthalmic Physiol. Opt. 15, 601–603 (1995).
    [Crossref]
  46. B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).
  47. A. B. Watson and J. I. Yellott, “A unified formula for light-adapted pupil size,” J. Vis. 12(10):12, 1–16 (2012).
    [Crossref]
  48. K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
    [Crossref]
  49. K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal OFF-pathways: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999).
    [Crossref]
  50. H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).
    [Crossref]
  51. K. Shinomori, Y. Nakano, and K. Uchikawa, “Influence of the illuminance and spectral composition of surround fields on spatially induced blackness,” J. Opt. Soc. Am. A 11, 2383–2388 (1994).
    [Crossref]
  52. K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372–387 (1997).
    [Crossref]

2012 (4)

2011 (1)

D. H. Foster, “Review: color constancy,” Vis. Res. 51, 674–700 (2011).
[Crossref]

2010 (1)

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
[Crossref]

2008 (1)

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13):6, 1–16 (2008).
[Crossref]

2007 (1)

2006 (2)

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vis. Res. 46, 3055–3066 (2006).
[Crossref]

2004 (3)

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
[Crossref]

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2), 57–81 (2004).
[Crossref]

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vis. 4(9), 693–710 (2004).
[Crossref]

2003 (1)

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

2002 (1)

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[Crossref]

2001 (1)

L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
[Crossref]

2000 (1)

J. L. Nieves, A. García-Beltrán, and J. Romero, “Response of the human visual system to variable illuminant conditions: an analysis of opponent-colour mechanisms in colour constancy,” Ophthalmic Physiol. Opt. 20, 44–58 (2000).
[Crossref]

1999 (3)

K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vis. Res. 39, 1531–1550 (1999).
[Crossref]

K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal OFF-pathways: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999).
[Crossref]

K.-H. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
[Crossref]

1998 (1)

1997 (4)

1996 (1)

1995 (3)

P. A. Stanley and A. K. Davies, “The effect of field of view size on steady-state pupil diameter,” Ophthalmic Physiol. Opt. 15, 601–603 (1995).
[Crossref]

E.-J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vis. Res. 35, 239–254 (1995).
[Crossref]

D. H. Foster and K. J. Linnell, “Evidence for relational colour constancy in red-green colour-deficient human observers,” J. Physiol. 485, 23–24 (1995).

1994 (3)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[Crossref]

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

K. Shinomori, Y. Nakano, and K. Uchikawa, “Influence of the illuminance and spectral composition of surround fields on spatially induced blackness,” J. Opt. Soc. Am. A 11, 2383–2388 (1994).
[Crossref]

1993 (1)

1992 (3)

1991 (1)

1989 (2)

J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[Crossref]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5 (1989).

1987 (1)

1986 (1)

1979 (1)

J. A. Movshon and P. Lennie, “Pattern-selective adaptation in visual cortical neurons,” Nature 278, 850–852 (1979).
[Crossref]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[Crossref]

1964 (1)

Amano, K.

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
[Crossref]

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
[Crossref]

K. Amano, D. H. Foster, and S. M. C. Nascimento, “Red-green colour deficiency and colour constancy under orthogonal-daylight changes,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 225–230.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Tritanopic colour constancy under daylight changes?” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 218–224.

Arend, L. E.

Baraas, R. C.

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
[Crossref]

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
[Crossref]

Bäuml, K.-H.

K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vis. Res. 39, 1531–1550 (1999).
[Crossref]

K.-H. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
[Crossref]

Boynton, R. M.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), p. 557.

Brainard, D. H.

Brettel, H.

Brunt, W. A.

Chichilnisky, E.-J.

E.-J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vis. Res. 35, 239–254 (1995).
[Crossref]

Daugirdiene, A.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

Davies, A. K.

P. A. Stanley and A. K. Davies, “The effect of field of view size on steady-state pupil diameter,” Ophthalmic Physiol. Opt. 15, 601–603 (1995).
[Crossref]

de Weert, C. M.

J. M. Troost, L. Wei, and C. M. de Weert, “Binocular measurements of chromatic adaptation,” Vis. Res. 32, 1987–1997 (1992).
[Crossref]

DeBonet, J.

del Barco, L. J.

Delahunt, P. B.

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2), 57–81 (2004).
[Crossref]

DeMarco, P.

Elliott, D. B.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Foster, D. H.

D. H. Foster, “Review: color constancy,” Vis. Res. 51, 674–700 (2011).
[Crossref]

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
[Crossref]

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
[Crossref]

D. H. Foster and K. J. Linnell, “Evidence for relational colour constancy in red-green colour-deficient human observers,” J. Physiol. 485, 23–24 (1995).

K. Amano, D. H. Foster, and S. M. C. Nascimento, “Red-green colour deficiency and colour constancy under orthogonal-daylight changes,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 225–230.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Tritanopic colour constancy under daylight changes?” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 218–224.

Fukuda, K.

García, J. A.

García-Beltrán, A.

J. L. Nieves, A. García-Beltrán, and J. Romero, “Response of the human visual system to variable illuminant conditions: an analysis of opponent-colour mechanisms in colour constancy,” Ophthalmic Physiol. Opt. 20, 44–58 (2000).
[Crossref]

Goldstein, R.

Golz, J.

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13):6, 1–16 (2008).
[Crossref]

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[Crossref]

Hallikainen, J.

Hita, E.

Jaaskelainen, T.

Judd, D. B.

Kaiser, P. K.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), p. 557.

Kitazawa, Y.

Kulikowski, J. J.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

Kuriki, I.

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vis. Res. 46, 3055–3066 (2006).
[Crossref]

I. Kuriki and K. Uchikawa, “Limitations of surface-color and apparent-color constancy,” J. Opt. Soc. Am. A 13, 1622–1636 (1996).
[Crossref]

Lennie, P.

J. A. Movshon and P. Lennie, “Pattern-selective adaptation in visual cortical neurons,” Nature 278, 850–852 (1979).
[Crossref]

Linnell, K. J.

D. H. Foster and K. J. Linnell, “Evidence for relational colour constancy in red-green colour-deficient human observers,” J. Physiol. 485, 23–24 (1995).

Lutze, M.

MacAdam, D. L.

MacDonald, J.

A. Morland, J. MacDonald, and K. Middleton, “Color constancy in acquired and congenital color vision deficiencies,” in John Dalton’s Colour Vision Legacy: Selected Proceedings of the International Conference, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 463–468.

MacLeod, D. I. A.

Mayser, H.

L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
[Crossref]

Middleton, K.

A. Morland, J. MacDonald, and K. Middleton, “Color constancy in acquired and congenital color vision deficiencies,” in John Dalton’s Colour Vision Legacy: Selected Proceedings of the International Conference, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 463–468.

Mollon, J. D.

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).
[Crossref]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[Crossref]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5 (1989).

Morland, A.

A. Morland, J. MacDonald, and K. Middleton, “Color constancy in acquired and congenital color vision deficiencies,” in John Dalton’s Colour Vision Legacy: Selected Proceedings of the International Conference, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 463–468.

Movshon, J. A.

J. A. Movshon and P. Lennie, “Pattern-selective adaptation in visual cortical neurons,” Nature 278, 850–852 (1979).
[Crossref]

Murray, I. J.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

Nakano, Y.

Nascimento, S. M. C.

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
[Crossref]

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
[Crossref]

K. Amano, D. H. Foster, and S. M. C. Nascimento, “Red-green colour deficiency and colour constancy under orthogonal-daylight changes,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 225–230.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Tritanopic colour constancy under daylight changes?” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 218–224.

Neitz, J.

M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.

Neitz, M.

M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.

Nieves, J. L.

J. L. Nieves, A. García-Beltrán, and J. Romero, “Response of the human visual system to variable illuminant conditions: an analysis of opponent-colour mechanisms in colour constancy,” Ophthalmic Physiol. Opt. 20, 44–58 (2000).
[Crossref]

Panorgias, A.

Parkkinen, J. P. S.

Phillips, N. J.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Pokorny, J.

Reeves, A.

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[Crossref]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5 (1989).

Regan, B. C.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[Crossref]

Romero, J.

J. L. Nieves, A. García-Beltrán, and J. Romero, “Response of the human visual system to variable illuminant conditions: an analysis of opponent-colour mechanisms in colour constancy,” Ophthalmic Physiol. Opt. 20, 44–58 (2000).
[Crossref]

J. Romero, J. A. García, L. J. del Barco, and E. Hita, “Evaluation of color-discrimination ellipsoids in two-color spaces,” J. Opt. Soc. Am. A 10, 827–837 (1993).
[Crossref]

Rüttiger, L.

L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
[Crossref]

Schefrin, B. E.

Schirillo, J.

Sérey, L.

L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
[Crossref]

Sharpe, L. T.

L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
[Crossref]

Shinomori, K.

K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
[Crossref]

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal OFF-pathways: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999).
[Crossref]

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372–387 (1997).
[Crossref]

K. Shinomori, Y. Nakano, and K. Uchikawa, “Influence of the illuminance and spectral composition of surround fields on spatially induced blackness,” J. Opt. Soc. Am. A 11, 2383–2388 (1994).
[Crossref]

Smith, V. C.

Smithson, H.

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vis. 4(9), 693–710 (2004).
[Crossref]

Spehar, B.

Speigle, J. M.

Spillmann, L.

K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal OFF-pathways: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999).
[Crossref]

Stanikunas, R.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

Stanley, P. A.

P. A. Stanley and A. K. Davies, “The effect of field of view size on steady-state pupil diameter,” Ophthalmic Physiol. Opt. 15, 601–603 (1995).
[Crossref]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Troost, J. M.

J. M. Troost, L. Wei, and C. M. de Weert, “Binocular measurements of chromatic adaptation,” Vis. Res. 32, 1987–1997 (1992).
[Crossref]

Uchikawa, K.

Vaitkevicius, H.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

van de Kraats, J.

van Norren, D.

Viénot, F.

von Kries, J.

J. von Kries, “Chromatic adaptation,” in Sources of Color Science, D. L. MacAdam, ed. (MIT, 1970), pp. 145–148.

Wandell, B. A.

E.-J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vis. Res. 35, 239–254 (1995).
[Crossref]

D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[Crossref]

Watson, A. B.

A. B. Watson and J. I. Yellott, “A unified formula for light-adapted pupil size,” J. Vis. 12(10):12, 1–16 (2012).
[Crossref]

Wei, L.

J. M. Troost, L. Wei, and C. M. de Weert, “Binocular measurements of chromatic adaptation,” Vis. Res. 32, 1987–1997 (1992).
[Crossref]

Werner, J. S.

K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
[Crossref]

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal OFF-pathways: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999).
[Crossref]

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372–387 (1997).
[Crossref]

Whitaker, D.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Winn, B.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Wyszecki, G.

Yellott, J. I.

A. B. Watson and J. I. Yellott, “A unified formula for light-adapted pupil size,” J. Vis. 12(10):12, 1–16 (2012).
[Crossref]

Zaidi, Q.

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vis. 4(9), 693–710 (2004).
[Crossref]

Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[Crossref]

Appl. Opt. (1)

Color Res. Appl. (1)

L. Rüttiger, H. Mayser, L. Sérey, and L. T. Sharpe, “The color constancy of the red-green color blind,” Color Res. Appl. 26, S209–S213 (2001).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy of red-green dichromats and anomalous trichromats,” Invest. Ophthalmol. Visual Sci. 51, 2286–2293 (2010).
[Crossref]

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (17)

J. Romero, J. A. García, L. J. del Barco, and E. Hita, “Evaluation of color-discrimination ellipsoids in two-color spaces,” J. Opt. Soc. Am. A 10, 827–837 (1993).
[Crossref]

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref]

I. Kuriki and K. Uchikawa, “Limitations of surface-color and apparent-color constancy,” J. Opt. Soc. Am. A 13, 1622–1636 (1996).
[Crossref]

J. van de Kraats and D. van Norren, “Optical density of the aging human ocular media in the visible and the UV,” J. Opt. Soc. Am. A 24, 1842–1857 (2007).
[Crossref]

K. Uchikawa, K. Fukuda, Y. Kitazawa, and D. I. A. MacLeod, “Estimating illuminant color based on luminance balance of surfaces,” J. Opt. Soc. Am. A 29, A133–A143 (2012).
[Crossref]

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[Crossref]

K. Shinomori, Y. Nakano, and K. Uchikawa, “Influence of the illuminance and spectral composition of surround fields on spatially induced blackness,” J. Opt. Soc. Am. A 11, 2383–2388 (1994).
[Crossref]

K.-H. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
[Crossref]

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[Crossref]

K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372–387 (1997).
[Crossref]

D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image: I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
[Crossref]

Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[Crossref]

H. Brettel, F. Viénot, and J. D. Mollon, “Computerized simulation of color appearance for dichromats,” J. Opt. Soc. Am. A 14, 2647–2655 (1997).
[Crossref]

L. E. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[Crossref]

J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[Crossref]

L. E. Arend, A. Reeves, J. Schirillo, and R. Goldstein, “Simultaneous color constancy: papers with diverse munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
[Crossref]

D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[Crossref]

J. Physiol. (2)

D. H. Foster and K. J. Linnell, “Evidence for relational colour constancy in red-green colour-deficient human observers,” J. Physiol. 485, 23–24 (1995).

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5 (1989).

J. Vis. (4)

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13):6, 1–16 (2008).
[Crossref]

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2), 57–81 (2004).
[Crossref]

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vis. 4(9), 693–710 (2004).
[Crossref]

A. B. Watson and J. I. Yellott, “A unified formula for light-adapted pupil size,” J. Vis. 12(10):12, 1–16 (2012).
[Crossref]

Nature (2)

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[Crossref]

J. A. Movshon and P. Lennie, “Pattern-selective adaptation in visual cortical neurons,” Nature 278, 850–852 (1979).
[Crossref]

Ophthalmic Physiol. Opt. (2)

J. L. Nieves, A. García-Beltrán, and J. Romero, “Response of the human visual system to variable illuminant conditions: an analysis of opponent-colour mechanisms in colour constancy,” Ophthalmic Physiol. Opt. 20, 44–58 (2000).
[Crossref]

P. A. Stanley and A. K. Davies, “The effect of field of view size on steady-state pupil diameter,” Ophthalmic Physiol. Opt. 15, 601–603 (1995).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

K. Shinomori and J. S. Werner, “Aging of human short-wave cone pathways,” Proc. Natl. Acad. Sci. USA 109, 13422–13427 (2012).
[Crossref]

Vis. Neurosci. (1)

R. C. Baraas, D. H. Foster, K. Amano, and S. M. C. Nascimento, “Protanopic observers show nearly normal color constancy with natural reflectance spectra,” Vis. Neurosci. 21, 347–351 (2004).
[Crossref]

Vis. Res. (10)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[Crossref]

D. H. Foster, “Review: color constancy,” Vis. Res. 51, 674–700 (2011).
[Crossref]

E.-J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vis. Res. 35, 239–254 (1995).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[Crossref]

J. M. Troost, L. Wei, and C. M. de Weert, “Binocular measurements of chromatic adaptation,” Vis. Res. 32, 1987–1997 (1992).
[Crossref]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vis. Res. 46, 3055–3066 (2006).
[Crossref]

K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vis. Res. 39, 1531–1550 (1999).
[Crossref]

K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal OFF-pathways: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999).
[Crossref]

K. Shinomori and J. S. Werner, “Senescence of the temporal impulse response to a luminous pulse,” Vis. Res. 43, 617–627 (2003).
[Crossref]

Other (8)

Munsell Color Corporation, Munsell Book of Color—Matte Finish Collection (Munsell Color Corp., 1976).

M. Neitz and J. Neitz, “Molecular genetics of human color vision and color vision defects,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), pp. 974–988.

J. von Kries, “Chromatic adaptation,” in Sources of Color Science, D. L. MacAdam, ed. (MIT, 1970), pp. 145–148.

A. Morland, J. MacDonald, and K. Middleton, “Color constancy in acquired and congenital color vision deficiencies,” in John Dalton’s Colour Vision Legacy: Selected Proceedings of the International Conference, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 463–468.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Tritanopic colour constancy under daylight changes?” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 218–224.

K. Amano, D. H. Foster, and S. M. C. Nascimento, “Red-green colour deficiency and colour constancy under orthogonal-daylight changes,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 225–230.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), p. 557.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Example of test stimulus for red illumination condition. The standard pattern under D65 illumination (left) and the test pattern under colored illumination (right) were presented haploscopically in each trial. The left and right locations of patterns were changed from session to session.
Fig. 2.
Fig. 2. CIE 1976 u v chromaticity coordinates of the twelve central colored patches, illuminated by D65 illumination. The label denotes the code in the Munsell color system. The Value and Chroma were 5 and 6.
Fig. 3.
Fig. 3. Location of test illuminations compared to individual discrimination ellipsoids (denoted by red lines for protans and green lines for deutan and deuteranomalous observers) in the CIE 1976 u v chromaticity diagram. Open squares (protanopes) and circles (deuteranope and deuteranomalous observers) denote the corresponding illuminations obtained individually. Red and green filled circles denote the illuminations for color-normal observers. The black circle denotes D65 illumination. Blue and yellow illuminations are denoted by open triangles. Symbol colors denote the color of illuminations. Black lines denote the longer axis of discrimination ellipsoids for color-deficient observers and the standard deutan line for color-normal observers.
Fig. 4.
Fig. 4. Constancy indices of color-normal observers on twelve color patches under the red, green, blue, and yellow illumination conditions. The value for each color patch was averaged over five color-normal observers (N). The error bars represent the standard error of the mean.
Fig. 5.
Fig. 5. Distance on blue-yellow adjustment line between the standard point illuminated by D65 and the average of the matched points illuminated by test illumination (red, green, blue, and yellow illuminations from top to bottom) for color-deficient observers. Black and gray bars denote the color discrimination range as the mean of the ranges of all color-deficient observers (see text for details).
Fig. 6.
Fig. 6. Comparison of the L-cone (top) and M-cone (bottom) matched by color-normal observers (ordinate) with those predicted by the von Kries model (abscissa) for twelve color patches. N denotes color-normal observers. The four columns of panels correspond to the red, green, blue, and yellow illuminations. Diagonal (dotted) lines indicate perfect von Kries-type adaptation. The black lines indicate no adaptation. The red lines denote the best fits, defined by the least sum of squared error between the prediction and the match, to the data points. Each data point was averaged over five observers and six sessions.
Fig. 7.
Fig. 7. Comparison of cone responses matched by color-deficient observers (ordinate) with those predicted by the von Kries model (abscissa) for twelve color patches. First row: M-cone responses matched by protanopes (denoted by P); each data point was averaged over 3 protanopes. Second row: L-cone responses matched by 1 deuteranope (D). Third row: L-cone responses matched by deuteranomalous observers (DA); each data point was averaged over 2 deuteranomalous observers. Fourth row: M-cone responses by deuteranomalous observers (DA). Fifth row: M -cone responses by deuteranomalous observers (DA). The four columns from left to right correspond to red, green, blue, and yellow test illuminations. Notations of the symbol and lines are the same with Fig. 6.
Fig. 8.
Fig. 8. Comparison of matched S-cone responses with the von Kries model predictions for each observer group under four illumination conditions. Notations are the same as in Fig. 7, except N denotes color-normal observers (first row) and there is only one set of data (fourth row) for deuteranomalous observers (DA).
Fig. 9.
Fig. 9. Comparison between the matched L-2M (top) and L- 2 M (bottom) responses of color-normal (N) and deuteranomalous (DA) observers and the von Kries model predictions for the red, green, blue, and yellow illuminations (from left to right). Black lines denote the value under D65 illumination. If the matches perfectly comply with a principle of the separated adaptation and gain control on each cone type, the data points would fall onto the diagonal line.
Fig. 10.
Fig. 10. Comparison of the matched blue-yellow response [as defined in Eq. (7)] of color-normal (denoted by N), protan (P), deutan (D), and deuteranomalous (DA) observers (from top to bottom), and the von Kries model predictions for red, green, blue, and yellow illuminations (from left to right). Deuteranomalous observers’ data were analyzed for both M-cone (fourth row) and M -cone (fifth row). The other denotations are the same as those used in Fig. 9.
Fig. 11.
Fig. 11. Comparison of M-cone (top and middle panels) and M -cone (bottom panel) responses matched by the two deuteranomalous observers (denoted separately by open and filled squares) under D65 illumination with the standard normal observer’s M- (top panel) and L-cone (middle panel) responses and the standard deuteranomalous observer’s M -cone response (bottom panel) under D65 illumination. The L- and M-cone responses in the middle panel were normalized from 0 to 1 separately for comparison and the point at 1.0,1.0 denotes the white patch of 20% reflectance. The red lines denote the best fit by the least-squares method.

Tables (7)

Tables Icon

Table 1. CIE1976 u v Chromaticity Coordinates and Cone Stimulations of All Illuminations a , b

Tables Icon

Table 2. Mean Contrast of Cones and Luminance between Colored and D65 Illuminations on 20% Flat-Reflectance Surface a , b , c , d , e

Tables Icon

Table 3. Luminance ( cd / m 2 ) of Background under All Illuminations for Color-Normal Observers

Tables Icon

Table 4. Coefficients in the Von Kries Model a , b

Tables Icon

Table 5. Slope Coefficient k and Coefficient of Determination R 2 for Fitted Lines in Fig. 6

Tables Icon

Table 6. Slope Coefficient k and Coefficient of Determination R 2 for Fitted Lines in Fig. 7 a

Tables Icon

Table 7. Slope Coefficient k and Coefficient of Determination R 2 for Fitted Lines in Fig. 8 a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = 1 b / a ,
( L post-adapted M post-adapted S post-adapted ) = ( k L , T 0.0 0.0 0.0 k M , T 0.0 0.0 0.0 k S , T ) ( L T M T S T ) = ( k L , D 65 0.0 0.0 0.0 k M , D 65 0.0 0.0 0.0 k S , D 65 ) ( L D 65 M D 65 S D 65 ) .
{ k L , T = 1 / L W , T k M , T = 1 / M W , T k S , T = 1 / S W , T ,
{ k L , D 65 = 1 / L W , D 65 k M , D 65 = 1 / M W , D 65 k S , D 65 = 1 / S W , D 65 .
( L T M T S T ) = ( k L , D 65 / k L , T 0.0 0.0 0.0 k M , D 65 / k M , T 0.0 0.0 0.0 k S , D 65 / k S , T ) · ( L D 65 M D 65 S D 65 ) ,
{ k L , D 65 / k L , T = L W , T / L W , D 65 ( = k L , trans ) , k M , D 65 / k M , T = M W , T / M W , D 65 ( = k M , trans ) , k S , D 65 / k S , T = S W , T / S W , D 65 ( = k S , trans ) .
{ T blue-yellow = S u n · ( L + M ) ( normal ) T blue-yellow = S u p · M ( protan ) T blue-yellow = S u d · L ( deutan ) T blue-yellow = S u d a · ( L + M ) ( deuteranomaly ) T blue-yellow = S u d a · ( L + M ) ( deuteranomaly ) .

Metrics