Abstract

Starting from the paraxial formulation of the boundary-diffracted-wave theory proposed by Hannay [J. Mod. Opt. 47, 121–124 (2000) [CrossRef]  ] and exploiting its intrinsic geometrical character, we rediscover some classical results of Fresnel diffraction theory, valid for “large” hard-edge apertures, within a somewhat unorthodox perspective. In this way, a geometrical interpretation of the Schwarzchild uniform asymptotics of the paraxially diffracted wavefield by circular apertures [K. Schwarzschild, Sitzb. München Akad. Wiss. Math.-Phys. Kl. 28, 271–294 (1898)] is given and later generalized to deal with arbitrarily shaped apertures with smooth boundaries. A quantitative exploration is then carried out, with the language of catastrophe optics, about the diffraction patterns produced within the geometrical shadow by opaque elliptic disks under plane wave illumination. In particular, the role of the ellipse’s evolute as a geometrical caustic of the diffraction pattern is emphasized through an intuitive interpretation of the underlying saddle coalescing mechanism, obtained by suitably visualizing the saddle topology changes induced by letting the observation point move along the ellipse’s major axis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Uniform asymptotic theory of diffraction by apertures

Jakob J. Stamnes
J. Opt. Soc. Am. 73(1) 96-109 (1983)

Asymptotic representation of the boundary diffraction wave for a Gaussian beam incident on a circular aperture

Takashi Takenaka, Masao Kakeya, and Otozo Fukumitsu
J. Opt. Soc. Am. 70(11) 1323-1328 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription