Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media

Not Accessible

Your library or personal account may give you access

Abstract

Scattering hinders the passage of light through random media and consequently limits the usefulness of optical techniques for sensing and imaging. Thus, methods for increasing the transmission of light through such random media are of interest. Against this backdrop, recent theoretical and experimental advances have suggested the existence of a few highly transmitting eigen-wavefronts with transmission coefficients close to 1 in strongly backscattering random media. Here, we numerically analyze this phenomenon in 2D with fully spectrally accurate simulators and provide rigorous numerical evidence confirming the existence of these highly transmitting eigen-wavefronts in random media with periodic boundary conditions that are composed of hundreds of thousands of nonabsorbing scatterers. Motivated by bio-imaging applications in which it is not possible to measure the transmitted fields, we develop physically realizable algorithms for increasing the transmission through such random media using backscatter analysis. We show via numerical simulations that the algorithms converge rapidly, yielding a near-optimum wavefront in just a few iterations. We also develop an algorithm that combines the knowledge of these highly transmitting eigen-wavefronts obtained from backscatter analysis with intensity measurements at a point to produce a near-optimal focus with significantly fewer measurements than a method that does not utilize this information.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts

Curtis Jin, Raj Rao Nadakuditi, Eric Michielssen, and Stephen C. Rand
J. Opt. Soc. Am. A 31(8) 1788-1800 (2014)

Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes

Luc Gilles, Paolo Massioni, Caroline Kulcsár, Henri-François Raynaud, and Brent Ellerbroek
J. Opt. Soc. Am. A 30(5) 898-909 (2013)

Efficient camera self-calibration method based on the absolute dual quadric

Jing Jin and Xiaofeng Li
J. Opt. Soc. Am. A 30(3) 287-292 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved