Abstract
For numerical modeling of optical wave-guiding structures, perfectly matched layers (PMLs) are widely used to terminate the transverse variables of the waveguide. The PML modes are the eigenmodes of a waveguide terminated by PMLs, and they have found important applications in the mode matching method, the coupled mode theory, and so on. In this paper, we consider PML modes for two-dimensional slab waveguides. It is shown that the PML modes consist of perturbed propagating modes, perturbed leaky modes, and two infinite sequences of Berenger modes. High-order asymptotic solutions for the Berenger modes are derived using a systematic approach.
© 2013 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (4)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (33)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription