$\frac{1}{{\tau}_{c}}=$ |
$\left|v\right|{\left(\frac{{\sigma}^{2}}{{r}_{s}^{2}}+\frac{1}{{w}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left(\frac{{\gamma}^{2}}{{r}_{s}^{2}}+\frac{1}{{\zeta}_{1}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left(\frac{{B}_{c}^{2}}{{r}_{s}^{2}}+\frac{1}{{q}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left(\frac{{B}_{1}^{2}}{{r}_{s}^{2}}+\frac{{\mu}^{2}}{{q}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left(\frac{{B}_{2}^{2}}{{r}_{s}^{2}}+\frac{{\nu}^{2}}{{q}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|\frac{M}{{r}_{s}}$ |

τ_{d} = |
$\frac{{\tau}_{c}^{2}}{{r}_{s}^{2}}\sigma \mathbf{\text{vr}}$ |
$\frac{{\tau}_{c}^{2}}{{r}_{s}^{2}}\gamma \mathbf{\text{vr}}$ |
$\frac{{\tau}_{c}^{2}}{{r}_{s}^{2}}{B}_{0}\mathbf{\text{vr}}$ |
$\frac{{\tau}_{c}^{2}}{{r}_{s}^{2}}{B}_{1}\mathbf{\text{vr}}$ |
$\frac{{\tau}_{c}^{2}}{{r}_{s}^{2}}{B}_{2}\mathbf{\text{vr}}$ |
$\frac{{\tau}_{c}^{2}}{{r}_{s}^{2}}M\mathbf{\text{vr}}$ |

V_{s} = | σv | γv | B_{0}v | B_{1}v | B_{2}v | Mv |

ω_{D} = |
$\frac{{k}_{0}}{l}\mathbf{\text{vX}}$ |
$\frac{{k}_{0}}{l}\mathbf{\text{vX}}$ |
$-\frac{{k}_{0}}{{l}_{2}}\mathbf{\text{vX}}-{\mathbf{k}}_{0}\mathbf{v}$ |
$-\frac{{k}_{0}}{{l}_{2}}\mu \mathbf{\text{vX}}$ |
$\frac{v{k}_{0}}{{A}_{2}{l}_{3}{l}_{2}}\mathbf{\text{vX}}-{\mathbf{k}}_{0}\mathbf{v}$ | −k_{0}v |

r_{T} = | σw | γζ_{1} | B_{0}q |
${B}_{1}\frac{q}{\mu}$ |
${B}_{2}\frac{q}{\nu}$ | ∞ |

r_{i} = | — | — |
$\frac{{l}_{1}}{{k}_{0}q}{\left(1+{\theta}_{1}^{2}\right)}^{1/2}$ |
$\frac{{l}_{1}}{{k}_{0}q}{\left(1+{\theta}_{1}^{2}\right)}^{1/2}$ |
$\frac{{l}_{1}{l}_{2}{A}_{1}}{{k}_{0}q}{\left(1+{\theta}_{2}^{2}\right)}^{1/2}$ |
$\frac{{F}_{1}}{{k}_{0}q}{\left(1+{\theta}_{3}^{2}\right)}^{1/2}$ |

r_{0} = | — | — |
$\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.{r}_{s}{\left(1+{\theta}_{1}^{2}\right)}^{1/2}$ |
$\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.{r}_{s}{\left(1+{\theta}_{1}^{2}\right)}^{1/2}$ |
$\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.{r}_{s}{\left(1+{\theta}_{2}^{2}\right)}^{1/2}$ |
$\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.{r}_{s}{\left(1+{\theta}_{3}^{2}\right)}^{1/2}$ |

r_{s} = |
$\frac{2l}{{k}_{0}w}$ |
$\frac{l}{{l}_{0}}{\zeta}_{0}$ |
$\frac{2{l}_{2}}{{k}_{0}q}$ |
$\frac{2{l}_{2}}{{k}_{0}q}$ |
$\frac{2}{{k}_{0}q}\left({l}_{3}+{l}_{4}-\frac{{l}_{3}{l}_{4}}{{F}_{2}}\right)$ |
$\frac{2{F}_{2}}{{k}_{0}q}$ |

$\frac{1}{{\tau}_{cD}}=$ |
$\left|v\right|{\left({f}_{D}\frac{{\sigma}^{2}}{{r}_{s}^{2}}+\frac{1}{{w}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left({f}_{D}\frac{{\gamma}^{2}}{{r}_{s}^{2}}+\frac{1}{{\zeta}_{1}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left({f}_{D}\frac{{B}_{0}^{2}}{{r}_{s}^{2}}+\frac{1}{{q}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left({f}_{D}\frac{{B}_{1}^{2}}{{r}_{s}^{2}}+\frac{{\mu}^{2}}{{q}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|{\left({f}_{D}\frac{{B}_{2}^{2}}{{r}_{s}^{2}}+\frac{{\nu}^{2}}{{q}^{2}}\right)}^{1/2}$ |
$\left|\mathbf{v}\right|\sqrt{{f}_{D}}\frac{M}{{r}_{s}}$ |

τ_{dD} = |
${f}_{D}\frac{{\tau}_{cD}^{2}}{{r}_{s}^{2}}\sigma \mathbf{\text{vr}}$ |
${f}_{D}\frac{{\tau}_{cD}^{2}}{{r}_{s}^{2}}\gamma \mathbf{\text{vr}}$ |
${f}_{D}\frac{{\tau}_{cD}^{2}}{{r}_{s}^{2}}{B}_{0}\mathbf{\text{vr}}$ |
${f}_{D}\frac{{\tau}_{cD}^{2}}{{r}_{s}^{2}}{B}_{1}\mathbf{\text{vr}}$ |
${f}_{D}\frac{{\tau}_{cD}^{2}}{{r}_{s}^{2}}{B}_{2}\mathbf{\text{vr}}$ |
${f}_{D}\frac{{\tau}_{cD}^{2}}{{r}_{s}^{2}}M\mathbf{\text{vr}}$ |

Remarks | { |
$\sigma =1+\frac{l}{\rho}$ |
$\gamma =1+\frac{l}{{l}_{0}}$ |
${B}_{0}=\frac{{l}_{2}}{F}-1$ | μ = 1 + l_{1}/ρ | ν = l_{2}/F_{1} − 1 |
${\theta}_{3}=\frac{{k}_{0}{q}^{2}}{2}(\frac{1}{{F}_{1}}-\frac{{l}_{1}}{{F}_{1}^{2}}$ |

| | | B_{1}: cf. Eq. (2.64) | B_{2}: cf. Eq. (2.67) |
$+\frac{1}{{F}_{2}}-\frac{{l}_{4}}{{F}_{2}^{2}})$ |