Abstract

Based on the integral representation of Bessel function and the extended Huygens–Fresnel principle, an integral expression of the Wigner distribution function (WDF) for partially coherent Bessel–Gaussian beams (PBGBs) propagating through turbulent atmosphere has been obtained. Also, the analytical formulas of the M2-factor for PBGB propagation in such a medium have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The performed numerical results reveal that the M2-factor of a PBGB in turbulent atmosphere depends on the beam parameters of the initial input beam, the structure constants of the turbulent atmosphere, and the propagation distance. These results may be useful in long-distance optical communications in free space or in turbulent atmosphere.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere

Youquan Dan and Bin Zhang
Opt. Express 16(20) 15563-15575 (2008)

Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere

Kaicheng Zhu, Guoquan Zhou, Xuguang Li, Xiaojuan Zheng, and Huiqin Tang
Opt. Express 16(26) 21315-21320 (2008)

Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence

Xiaoyang Wang, Mingwu Yao, Zhiliang Qiu, Xiang Yi, and Zengji Liu
Opt. Express 23(10) 12508-12523 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription