Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

3D phase diversity: a myopic deconvolution method for short-exposure images: application to retinal imaging

Not Accessible

Your library or personal account may give you access

Abstract

3D deconvolution is an established technique in microscopy that may be useful for low-cost high-resolution imaging of the retina. We report on a myopic 3D deconvolution method developed in a Bayesian framework. This method uses a 3D imaging model, a noise model that accounts for both photon and detector noises, a regularization term that is appropriate for objects that are a mix of sharp edges and smooth areas, a positivity constraint, and a smart parameterization of the point-spread function (PSF) by the pupil phase. It estimates the object and the PSF jointly. The PSF parameterization through the pupil phase constrains the inversion by dramatically reducing the number of unknowns. The joint deconvolution is further constrained by an additional longitudinal support constraint derived from a 3D interpretation of the phase-diversity technique. This method is validated by simulated retinal images.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Mistral: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images

Laurent M. Mugnier, Thierry Fusco, and Jean-Marc Conan
J. Opt. Soc. Am. A 21(10) 1841-1854 (2004)

Marginal blind deconvolution of adaptive optics retinal images

L. Blanco and L. M. Mugnier
Opt. Express 19(23) 23227-23239 (2011)

AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

Erik F. Y. Hom, Franck Marchis, Timothy K. Lee, Sebastian Haase, David A. Agard, and John W. Sedat
J. Opt. Soc. Am. A 24(6) 1580-1600 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.