Abstract

Berreman’s 4×4 matrix approach has been generally applied to calculating light propagation in one-dimensional (1-D) inhomogeneous anisotropic media. In numerical calculations the propagator (propagation matrix) of whole 1-D inhomogeneous media is approximated by a stack of N homogeneous slab propagators. We analyze the error of the slab propagator in this slab approximation and show it is correct through the order 1N2. By using the extrapolation approach, we eliminate the leading error terms of the product (total propagator) of N homogeneous slab propagators successively. Numerical tests for a cholesteric liquid crystal show that the total propagator constructed through extrapolation is of higher accuracy and efficiency than Berreman’s and Abdulhalim’s or faster 4×4 total propagators.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription