Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient numerical representation of the optical field for the propagation of partially coherent radiation with a specified spatial and temporal coherence function

Not Accessible

Your library or personal account may give you access

Abstract

We propose a method to narrow the gap between the rigorous methods for the propagation of partially coherent light, which require excessive computational capacity, and the numerical methods used in practical engineering applications, where it is not clear how to handle spatial and temporal coherence in a statistically correct manner. As is the case for the latter methods, the numerical method described can deal with fields with a large spatial and temporal extent, which is necessary in practical applications such as laser fusion or optical lithography. However, the method also takes a few steps toward a more rigorous, yet efficient, representation of the optical field, which depends on detailed specified coherence properties of the radiation. The described method uses a set of independent monochromatic fields at different oscillation frequencies. The frequencies are chosen such that the statistical properties of the integrated intensity closely resemble those from a full-time trace treatment. Finally, we demonstrate the capabilities and limitations of the method with a few numerical examples of the propagation of a large field with a specified spatial and temporal coherence.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulating fields of arbitrary spatial and temporal coherence

Greg Gbur
Opt. Express 14(17) 7567-7578 (2006)

Coherent-mode representation of partially polarized pulsed electromagnetic beams

Timo Voipio, Tero Setälä, and Ari T. Friberg
J. Opt. Soc. Am. A 30(11) 2433-2443 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.