Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Shape invariance and a universal form for the Gouy phase

Not Accessible

Your library or personal account may give you access

Abstract

It is shown that Hermite–Gaussian beams, Laguerre–Gaussian beams, and certain linear combinations thereof are the only finite-energy coherent beams that propagate, on free propagation, in a shape-invariant manner. All shape-invariant beams have Gouy phase of the universal c arctan(z/zR) form, with quantized values for the prefactor c. It is also shown that, as limiting cases, even two- and three-dimensional nondiffracting beams belong to this class when the Rayleigh distance goes to infinity. The results are deduced from the transport-of-intensity equations, by elementary means as well as by use of the Iwasawa decomposition. A pivotal role in the analysis is the finding that the only possible change in the phase front of a shape-invariant beam from one transverse plane to another is quadratic.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Gaussian Schell-model beams and general shape invariance

R. Simon and N. Mukunda
J. Opt. Soc. Am. A 16(10) 2465-2475 (1999)

Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization

R. Simon and N. Mukunda
J. Opt. Soc. Am. A 15(5) 1361-1370 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (82)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.