Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

General perturbation technique for the calculation of radiative effects in scattering and absorbing media

Not Accessible

Your library or personal account may give you access

Abstract

Recently it has been shown that the perturbation technique, based on joint use of both the direct and the adjoint solutions of the radiative transfer equation, is a powerful tool to solve and analyze various time-independent one-dimensional problems of atmospheric physics such as the calculation of weighting functions, prediction of radiative effects, and development of retrieval algorithms. Our primary goal is to obtain a general formulation of the perturbation technique for the most general case of the radiative transfer problem: time-dependent problems, with regard to polarization, and any possible external sources of radiation such as laser beams and solar illumination. Possible areas of application of the perturbation technique are discussed, and several examples to illustrate them are provided. The accuracy of this technique is discussed by considering the particular examples.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

Siegfried A. W. Gerstl and Andrew Zardecki
Appl. Opt. 24(1) 81-93 (1985)

Accurate radiative transfer calculations for layered media

Adrian C. Selden
J. Opt. Soc. Am. A 33(7) 1409-1414 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (87)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.