Abstract

We present the development and analysis of wave-front control strategies for large-order adaptive optics systems that use a segmented deformable mirror as the correcting optical element. The system analyzed represents a substantial departure from most conventional adaptive optics systems in that the feedback signal includes both the local wave-front tilt and the relative edge mismatch between adjacent segments. One of the major challenges in designing the wave-front control system is the large number of segments that must be commanded. A fast and nearly optimal method based on the local slope and edge measurements is developed for this system. Fast algorithms offering a massive degree of parallelism are also developed to permit real-time implementation of the control strategies on commercially available, low-cost, parallel architectures.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An exact analytic solution to segmented-mirror adaptive-optics control

S. Enguehard and B. Hatfield
J. Opt. Soc. Am. A 11(2) 874-879 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (111)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription