Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Progress in diffraction-limited imaging at the Multiple Mirror Telescope with adaptive optics

Not Accessible

Your library or personal account may give you access

Abstract

Low spatial frequencies of atmospheric turbulence are especially troublesome to astronomers because the phase distortions that these frequencies cause have a large amplitude. We have begun experiments at the Multiple Mirror Telescope to remove these errors with tip, tilt, and piston control of pieces of the wave front that are defined by the telescope’s six 1.8-m primary mirrors. We present long-exposure images that were recorded at the telescope with a resolution of as high as 0.08 arcsec under piston control, and 0.32 arcsec under tilt control, by use of an adaptive instrument designed to restore diffraction-limited imaging in the near infrared. Of particular importance for high-resolution imaging is the control of the piston or the mean phase errors between the segments. These errors can be calculated from the Fourier transform of the short-exposure combined-focus image, but the accuracy of the reconstructed wave front depends critically on the signal-to-noise ratio of the data. We present a theoretical analysis of the effects of photon and detector read noise on the derived piston errors and computer simulations of wave-front reconstructor algorithms. We find that a Wiener filter combined with nonlinear weighting of the piston errors minimizes the impact of noise. Finally, we summarize expected improvements to our system and discuss the application of these techniques to forthcoming large telescopes.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, and D. McCarthy
J. Opt. Soc. Am. A 11(2) 925-945 (1994)

Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

P. Wizinowich, B. McLeod, M. Lloyd-Hart, J. R. P. Angel, D. Colucci, R. Dekany, D. McCarthy, D. Wittman, and I. Scott-Fleming
Appl. Opt. 31(28) 6036-6046 (1992)

Atmospheric turbulence and the resolution limits of large ground-based telescopes

T. Stewart McKechnie
J. Opt. Soc. Am. A 9(11) 1937-1954 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.