Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffuse-reflectance model for smooth dielectric surfaces

Not Accessible

Your library or personal account may give you access

Abstract

A reflectance model that accurately predicts diffuse reflection from smooth inhomogeneous dielectric surfaces as a function of both viewing angle and angle of incidence is proposed. Utilizing results of radiative-transfer theory for subsurface multiple scattering, this new model precisely accounts for how incident light and the distribution of subsurface scattered light are influenced by Fresnel attenuation and Snell refraction at a smooth air–dielectric surface boundary. Whereas similar assumptions about subsurface scattering and Fresnel attenuation have been made in previous research on diffuse-reflectance modeling, the proposed model combines these assumptions in a different way and yields a more accurate expression for diffuse reflection that is shown to account for a number of empirical observations not predicted by existing models. What is particularly new about this diffuse-reflectance model is the resulting significant dependence on the viewing angle with respect to the surface normal. This dependence on the viewing angle explains distinctive properties of the behavior of diffuse reflection from smooth dielectric objects, properties not accounted for by existing diffuse-reflection models. Among these properties are prominent diffuse-reflection maxima effects occurring on objects when incident point-source illumination is greater than 50° relative to viewing, including the range from 90° to 180°, where the light source is behind the object with respect to viewing. For this range of incident illumination there is significant deviation from Lambertian behavior over a large portion of most smooth dielectric object surfaces, which makes it important for the computer vision community to be aware of such effects during incorporation of reflectance models into implementation of algorithms such as shape-from-shading. A number of experimental results are presented that verify the proposed diffuse-reflectance model.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Segmentation of surface curvature with a photometric invariant

Lawrence B. Wolff and Joel Fan
J. Opt. Soc. Am. A 11(11) 3090-3100 (1994)

Diffuse and Specular Reflectance from Rough Surfaces

Bram van Ginneken, Marigo Stavridi, and Jan J. Koenderink
Appl. Opt. 37(1) 130-139 (1998)

Standard surface-reflectance model and illuminant estimation

Shoji Tominaga and Brian A. Wandell
J. Opt. Soc. Am. A 6(4) 576-584 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.