Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Interevent-time statistics for shot-noise-driven self-exciting point processes in photon detection

Not Accessible

Your library or personal account may give you access

Abstract

Probability densities for interevent time are obtained for a doubly stochastic Poisson point process (DSPP) in the presence of self-excitation. The DSPP is assumed to have a stochastic rate that is a filtered Poisson point process (shot noise). The model of a Poisson process driving another Poisson process produces a pulse-bunching effect. Self-excitation (relative refractoriness) results in a deficit of short time intervals. Both effects are observed in many applications of optical detection. The model is applicable to the detection of fluorescence or scintillation generated by ionizing radiation in a photomultiplier tube. It is also used successfully to fit the maintained discharge interspike-interval histograms recorded by Barlow, Levick, and Yoon [ Vision Res. 11, Suppl. 3, 87– 101 ( 1971)] for a cat’s on-center retinal ganglion cell in darkness.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Thomas point process in pulse, particle, and photon detection

Kuniaki Matsuo, Malvin Carl Teich, and Bahaa E. A. Saleh
Appl. Opt. 22(12) 1898-1909 (1983)

Refractoriness in the maintained discharge of the cat’s retinal ganglion cell*

Malvin Carl Teich, Leonard Matin, and Barry I. Cantor
J. Opt. Soc. Am. 68(3) 386-402 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.