Abstract

General equations describing the theoretical uncertainty in the measurement of the complex reflectance ratio, ρ, are given for rotating-analyzer ellipsometers operating under shot-noise-limited, detector-noise-limited, and incident power-fluctuation-limited (ideal-detector) conditions. In the latter case, uncertainty is minimized when the light reflected from the sample surface is circularly polarized. For shot-noise- and detector-noise-limited configurations, minimum uncertainty is obtained as a compromise between the conditions that yield circularly polarized reflected light and those that maximize the transmitted flux. As |ρ| → 0, the uncertainty decreases linearly in |ρ| for ideal-detector systems, approaches a constant limiting value for shot-noise-limited systems, and becomes arbitrarily large for detector-noise-limited systems, which suggests that measurements at the pseudo-Brewster angle should be avoided in the latter case. A compensator is essential to achieve high precision on dielectric surfaces, but is generally not needed for metals. The theoretical relative precision to which the complex dielectric function can be obtained for silicon and gold over the visible and near-uv optical range is of the order of 1 × 10−5, which is comparable to that attainable by high-precision reflectance techniques.

© 1974 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing precision of rotating-analyzer and rotating-compensator ellipsometers

D. E. Aspnes
J. Opt. Soc. Am. A 21(3) 403-410 (2004)

Scanning ellipsometer by rotating polarizer and analyzer

L. Y. Chen and David W. Lynch
Appl. Opt. 26(24) 5221-5228 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription