Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic Image Formation with Holograms of Arbitrary Shape

Not Accessible

Your library or personal account may give you access

Abstract

A diffraction-limited, electromagnetic theory of image formation is presented for a point-reference hologram whose recording arrangement consists of a surface of arbitrary shape, a point-reference source, and the object. The hologram is illuminated by a spherical electromagnetic wave during reconstruction. The electromagnetic hologram is assumed to have recorded two components of the field scattered from the object so that the vector field is completely reconstructed. The vector hologram is modeled by electric and magnetic surface currents determined from the irradiance of each of two orthogonal components of the object field on the film. The image field is described by a dyadic kernel, the system response to a point object, which is related to the scalar kernel by Π(r,r′) = DK(r,r′), where D is the dyadic operator D= (I+k−2∇∇). It is shown that the conjugate-image field produced by a point-reference electromagnetic hologram approximates the field produced by the ideal system, which forms the image of a point object by launching a spherically converging wave.

© 1971 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffraction-Limited, Scalar Image Formation with Holograms of Arbitrary Shape*

Robert P. Porter
J. Opt. Soc. Am. 60(8) 1051-1059 (1970)

Evanescent Waves and the Electromagnetic Field of a Moving Charged Particle*

R. Asby and E. Wolf
J. Opt. Soc. Am. 61(1) 52-59 (1971)

Noise Characteristics of Photographic Emulsions Used for Holography

Wai–Hon Lee and Milton O. Greer
J. Opt. Soc. Am. 61(3) 402-409 (1971)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (82)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved