Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ambiguity of the Transfer Function with Partially Coherent Illumination

Not Accessible

Your library or personal account may give you access

Abstract

The one-dimensional case of the image of a sinusoidal transmittance distribution in partially coherent illumination (with the quasimonochromatic approximation) is described analytically, and shown generally to bear a nonlinear relation to the object. It is shown that the significant parameter is the ratio of coherence interval to the diameter of the Airy disk (or diffraction spot) of the imaging lens. It is further shown that since the spatial frequency of the object is related to coherence interval, typical nonlinear effects can take place at low frequencies. Since the transfer function is defined only for the incoherent limit without ambiguity, an apparent transfer function, dealing only with the image component which existed in the object, is used for comparison. The harmonics generated by the nonlinear behavior are ignored, and the variation of transfer function is observed to be a function of coherence and input modulation. It becomes apparent that the transfer function, as currently defined and measured, is inadequate to describe optical-system performance under all conditions of illumination.

© 1967 Optical Society of America

Full Article  |  PDF Article
More Like This
Transfer Function for Cascaded Optical Systems

John B. DeVelis and George B. Parrent
J. Opt. Soc. Am. 57(12) 1486-1490 (1967)

Nonlinearity in Optical Imaging Systems*

Richard J. Becherer and George B. Parrent
J. Opt. Soc. Am. 57(12) 1479-1486 (1967)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved