Abstract

Feature Issue on Optical Code Division Multiple Access

We present a novel architecture for an optical pulse position modulation (PPM) scalable modulator and demodulator with a simple all-optical design based on ultrafast sampling. The use of PPM for two-dimensional time-wavelength incoherent optical code division multiple access (OCDMA) systems is investigated. The shift PPM-OCDMA scheme, where PPM slot overlaps as well as frame overlaps are allowed, is analyzed and compared to the more traditional on-off keying (OOK) and PPM-OCDMA schemes. For our design's parameters, we show that OOK performs better when the network operates at low data-rate transmissions (2.5 GHz or lower) or when the network is small in size. However, our proposed shift PPM-OCDMA outperforms both OOK and PPM-OCDMA when the user's transmission rate increases, relaxing both coding and hardware constraints. An experimental demonstration of shift PPM-OCDMA using our novel PPM modulator and demodulator with four levels was performed. Up to six simultaneous OCDMA users, each operating at 10 Gbits/s, were multiplexed on a star network while operating at a bit error rate of 10−9 or better.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription