Abstract

Reconfigurable optical add/drop multiplexers (ROADMs) are key elements in operators’ backbone networks. The breakthrough node concept of architecture on demand (AoD) permits us to design optical nodes with higher flexibility with respect to ROADMs. In this work, we present a five-step algorithm for designing AoD instances according to some given traffic requests, which are able to support subwavelength time switching up to wavelength/superchannel/fiber switching. We evaluate AoD performance in terms of power consumption and number of backplane optical cross-connections. Furthermore, we discuss trade-offs involved in the migration from a fixed to a flexible grid with regard to the optical node size, capacity, and power consumption. We compare several ROADM architectures proposed in the literature with AoD in terms of power consumption and cost. We also study different technologies for enhancing the scalability of AoD. Results show that AoD can bring significant power savings compared to other architectures while offering a throughput of hundreds of terabits per second.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Introducing Flexible and Synthetic Optical Networking: Planning and Operation Based on Network Function Programmable ROADMs

Ajmal Muhammad, Georgios Zervas, Norberto Amaya, Dimitra Simeonidou, and Robert Forchheimer
J. Opt. Commun. Netw. 6(7) 635-648 (2014)

OSNR Aware Composition of an Open and Disaggregated Optical Node and Network

Heng Liu, Adaranijo Peters, Miquel Garrich, and Georgios Zervas
J. Opt. Commun. Netw. 9(10) 844-854 (2017)

On-Demand Routing and Spectrum Allocation for Energy-Efficient AoD Nodes in SDM-EONs

Shohei Fujii, Yusuke Hirota, Hideki Tode, and Takashi Watanabe
J. Opt. Commun. Netw. 9(11) 960-973 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription