## Abstract

To overcome the Internet ossification, network virtualization has been proposed as a promising method because of its advantages (e.g., on-demand and efficient resource allocation). Virtual network embedding (VNE) is one of the main challenges for network virtualization. Energy costs of servers in data centers (DCs) are major contributions to the power consumption in information and communication technology. Therefore, VNE should consider both acceptance ratio and power consumption. In this paper, a mixed integer linear programming model is proposed with the objective of minimizing the total power consumption in software-defined optical data center networks by reducing the active data centers and power-consuming network components. In addition, the coordinates of nodes and delay of links are considered for a more realistic scenario. Compared with the existing node ranking method, the proposed global topology resource (GTR) can effectively evaluate the possibility of each DC node to host virtual nodes. Based on the GTR method, we propose a location-aware energy efficient VNE algorithm, namely GTR-VNE. Simulation results show that GTR-VNE can obtain up to 9.3% and 5% improvement of power consumption and acceptance ratio compared with benchmarks. Furthermore, based on GTR and artificial intelligence ant colony optimization (ACO), another energy efficient algorithm, ACO-VNE, is proposed. ACO-VNE can obtain up to 28.7% improvement in power consumption compared with GTR-VNE. In addition, ACO-VNE has better performance in terms of revenue cost ratio and acceptance ratio.

© 2018 Optical Society of America

Full Article | PDF Article**OSA Recommended Articles**

Rongping Lin, Shan Luo, Haoran Wang, and Sheng Wang

Opt. Express **25**(24) 29699-29713 (2017)

Bowen Chen, Yongli Zhao, and Jie Zhang

Opt. Express **23**(19) 24860-24872 (2015)

Rongping Lin, Shan Luo, Jingwei Zhou, Sheng Wang, Bin Chen, Xiaoning Zhang, Anliang Cai, Wen-De Zhong, and Moshe Zukerman

Opt. Express **26**(8) 10898-10913 (2018)