Abstract

Recent advances in software and hardware greatly improve the multi-layer control and management of reconfigurable optical add-drop multiplexer (ROADM) systems facilitating wavelength switching. However, ensuring stable performance and reliable quality of transmission (QoT) remain difficult problems for dynamic operation. Optical power dynamics that arise from a variety of physical effects in the amplifiers and transmission fiber complicate the control and performance predictions in these systems. We present a deep-neural-network-based machine learning method to predict the power dynamics of a 90-channel ROADM system from data collection and training. We further show that the trained deep neural network can recommend wavelength assignments for wavelength switching with minimal power excursions.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength source based optical circuit switching and wavelength reconfiguration in multi-hop ROADM systems

Weiyang Mo, Shengxiang Zhu, Yao Li, and Daniel C. Kilper
Opt. Express 25(22) 27736-27749 (2017)

Dynamic mitigation of EDFA power excursions with machine learning

Yishen Huang, Craig L. Gutterman, Payman Samadi, Patricia B. Cho, Wiem Samoud, Cédric Ware, Mounia Lourdiane, Gil Zussman, and Keren Bergman
Opt. Express 25(3) 2245-2258 (2017)

Low-Cost CDC ROADM Architecture Based on Stacked Wavelength Selective Switches

Haining Yang, Brian Robertson, Peter Wilkinson, and Daping Chu
J. Opt. Commun. Netw. 9(5) 375-384 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription