Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 5,
  • pp. 1515-1522
  • (2021)

Generative Adversarial Neural Networks Model of Photonic Crystal Fiber Based Surface Plasmon Resonance Sensor

Not Accessible

Your library or personal account may give you access

Abstract

Photonic crystal fibers (PCF) for specific applications are designed and optimized by both industry experts and researchers. However, the potential number of design combinations and flexible propagation features are offering a wide range of application areas, resulting in an exponential increase in the search space. This issue combined with the speed of the commonly used full vectorial finite element method (FV-FEM) simulators causes the task to take a significant amount of time. As stated in the previous works, artificial neural networks (ANN) can be employed to predict the result of numerical simulations much faster. However, there are two issues with the methods proposed previously: the required number of samples for training and the generality of these methods. In this article, we propose the use of generative adversarial networks (GAN) to augment the real dataset to train an ANN model. The experimental analysis suggested that the proposed combination not only accurately predicts the confinement loss even with limited amounts of data but also GAN can be used to improve existing methods in the literature. Moreover, the proposed system can also predict the confinement loss over a range of analytes and wavelengths in a completely new geometric configuration and generic enough not to require any additional tuning when used in a new dataset. This property is demonstrated by experimenting on an existing PCF dataset, which the proposed system surpassed the accuracy of the method proposed for it.

PDF Article
More Like This
Machine learning-enhanced surface plasmon resonance based photonic crystal fiber sensor

Arefe Ehyaee, Alireza Rahmati, Alireza Bosaghzadeh, and Saeed Olyaee
Opt. Express 32(8) 13369-13383 (2024)

Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers

Chao Liu, Lin Yang, Xili Lu, Qiang Liu, Famei Wang, Jingwei Lv, Tao Sun, Haiwei Mu, and Paul K. Chu
Opt. Express 25(13) 14227-14237 (2017)

D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.