Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 7,
  • pp. 1998-2009
  • (2020)

Opto-Mechanical Lab-on-Fiber Accelerometers

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we investigated the realization of Lab on fiber accelerometers based on micro-opto-mechanical cavities on the optical fiber tip. Two alternative approaches have been pursued. In the former one, the opto-mechanical cavity includes a simple cantilever suspended on the optical fiber end facet. In the latter, the opto-mechanical structure consists of a membrane sustained by four cantilevers. The mechanical response of the sensors has been predicted by numerical simulations based on the finite element method. Cantilever based accelerometers have been realized by using a ferrule top approach, whilst membrane based accelerometers have been realized through a photolithographic process followed by a transferring step for the final integration on the optical fiber tip. Different accelerometers have been fabricated with different geometrical features and characterized by using a shaking table. Either cantilever and membrane based Lab on fiber accelerometers exhibited a sensitivity of about 0.1 nm/(m/s2) on a 3 dB-bandwidth of 5 kHz with a resolution down to 100 μg/(Hz)1/2. Overall, the performance comparison with the actual state of the art confirms the potentiality and the versatility underlying the integration of micro-opto-mechanical (MOM) structures with the optical fibers towards a novel class of opto-mechanical lab on fiber accelerometers.

PDF Article
More Like This
Micro-opto-electro-mechanical systems accelerometer based on the Talbot effect of double-layer diffraction gratings

Liming Jin, Ce Wang, Li Jin, Wenqing Chen, Haodong Xu, Min Cui, and Mengwei Li
Appl. Opt. 61(18) 5386-5391 (2022)

High-sensitivity fiber optic graphene resonant accelerometer

Yujian Liu, Cheng Li, Jing Li, Zhen Wan, and Shangchun Fan
Opt. Lett. 49(7) 1790-1793 (2024)

2.4 ng/√Hz low-noise fiber-optic MEMS seismic accelerometer

Ziqiang Qu, Hao Ouyang, Huafeng Liu, Chenyuan Hu, Liang-Cheng Tu, and Zebing Zhou
Opt. Lett. 47(3) 718-721 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.