Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 7,
  • pp. 1735-1746
  • (2020)

Low-Complexity Second-Order Volterra Equalizer for DML-Based IM/DD Transmission System

Not Accessible

Your library or personal account may give you access

Abstract

Volterra nonlinear equalizers (VNLEs) are known to be effective in compensating for nonlinear distortions. However, the major drawback of these equalizers is the huge implementation and computation complexity. In this article, we propose and demonstrate low-complexity quadratic VNLEs specifically designed for directly modulated laser (DML)-based intensity-modulation/direct-detection (DD) systems. We first derive an analytical expression of the quadratic Volterra model for DML/DD systems and then identify the nonlinear distortion terms mainly contributing to the system performance. We show that the interplay between the DML's adiabatic frequency chirp and fiber chromatic dispersion produces the quadratic beating between the signal and the sum of time-sampled signals, which, in turn, makes the coefficients of some beating terms in Volterra series similar. Based on these findings, we reduce the number of coefficients to be determined in the quadratic VNLEs by grouping those beating terms. The performance of the proposed VNLEs is evaluated experimentally on a 56-Gb/s 4-ary pulse amplitude modulation link implemented by using a 1.55-μm DML. We measure the bit-error ratio performance of various equalizers, including feedforward equalizer, polynomial nonlinear equalizer, diagonally-pruned (DP) VNLE, and proposed quadratic VNLE, and compare them in terms of receiver sensitivity and implementation complexity. The results show that the proposed VNLE outperforms the DP-VNLE, although the implementation complexity of the two equalizers is similar. Also presented in this article is an algorithm for optimizing the parameter required in the proposed VNLE.

PDF Article
More Like This
Low-complexity nonlinear equalizer based on absolute operation for C-band IM/DD systems

Yukui Yu, Tianwai Bo, Yi Che, Deaho Kim, and Hoon Kim
Opt. Express 28(13) 19617-19628 (2020)

Low-complexity sparse absolute-term based nonlinear equalizer for C-band IM/DD systems

Junwei Zhang, Zhenrui Lin, Xiong Wu, Jie Liu, Alan Pak Tao Lau, Changjian Guo, Chao Lu, and Siyuan Yu
Opt. Express 29(14) 21891-21901 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved