Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 6,
  • pp. 1103-1112
  • (2020)

SDN-Controlled and Orchestrated OPSquare DCN Enabling Automatic Network Slicing With Differentiated QoS Provisioning

Not Accessible

Your library or personal account may give you access

Abstract

Optical switching techniques have the potential to enable the optical data center network (DCN) interconnections providing high capacity and fast switching capabilities, overcoming thus the bandwidth and latency bottleneck of present electrical switch-based multi-tiered DCNs. The rapid growth of multi-tenant applications with heterogeneous traffic require specialized quality of service (QoS) in terms of packet loss and latency to the DCN infrastructure. Slicing the DCNs into dedicated pieces according to the deployed applications, differentiated QoS, and high resource utilization can be provided. However, slicing the optical DCNs still needs to be investigated because the Software-defined Networking (SDN) technique is developed for the electrical networks, not fully supporting the properties of the optical network. Additionally, Network Slices (NS) need to be automatically provisioned and reconfigured, to provide flexible slice interconnections in support of the multi-tenant applications to be deployed. In this article, we propose and experimentally assess the automatic and flexible NSs configurations of optical OPSquare DCN controlled and orchestrated by an extended SDN control plane for multi-tenant applications with differentiated QoS provisioning. Optical Flow Control (OFC) protocol has been developed to prevent packet losses at switch sides caused by packet contentions. The extended OpenFlow (OF) protocol of SDN is deployed as well in support of the optical switching characteristics. Based on the collected resource topology of data plane, the optical network slices can be dynamically provisioned and automatically reconfigured by the SDN control plane. Meanwhile, experimental results validate that the priority assignment of application flows supplies dynamic QoS performance to various slices running applications with specific requirements in terms of packet loss and transmission latency. In addition, the capability of exposing traffic statistics information of data plane to SDN control plane enables the implementation of load balancing algorithms further improving the network performance with high QoS. No packet loss and less than 4.8 μs server-to-server latency can be guaranteed for the sliced network with highest priority at a load of 0.5.

PDF Article
More Like This
SDN-Enabled OPS With QoS Guarantee for Reconfigurable Virtual Data Center Networks

Wang Miao, Fernando Agraz, Shuping Peng, Salvatore Spadaro, Giacomo Bernini, Jordi Perelló, Georgios Zervas, Reza Nejabati, Nicola Ciulli, Dimitra Simeonidou, Harm Dorren, and Nicola Calabretta
J. Opt. Commun. Netw. 7(7) 634-643 (2015)

SDN enabled flexible optical data center network with dynamic bandwidth allocation based on photonic integrated wavelength selective switch

Xuwei Xue, Fumi Nakamura, Kristif Prifti, Bitao Pan, Fulong Yan, Fu Wang, Xiaotao Guo, Hiroyuki Tsuda, and Nicola Calabretta
Opt. Express 28(6) 8949-8958 (2020)

RGAIA: a reconfigurable AWGR based optical data center network

Jinzhe Che, Bingli Guo, Zichong Pang, Xuwei Xue, Yisong Zhao, Yuanzhi Guo, and Shanguo Huang
Opt. Express 30(13) 23640-23655 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.