Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 2,
  • pp. 432-438
  • (2020)

Low-Power (1.5 pJ/b) Silicon Integrated 106 Gb/s PAM-4 Optical Transmitter

Not Accessible

Your library or personal account may give you access

Abstract

As next-generation data center optical interconnects aim for 0.8 Tb/s or 1.6 Tb/s, serial rates up to 106 GBd are expected. However doubling the bandwidth of current 53 GBd 4-level pulse-amplitude modulation (PAM-4) transmitters is very challenging, and perhaps unfeasible with compact, non-travelling wave, lumped modulators or lasers. In our previous work, we presented an integrated 4:1 optical serializer with electro-absorption modulators (EAMs) in each path. Transmitter (TX) functionality was shown up to 104 GBd non-return-to-zero (NRZ) On-Off Keying (OOK) or PAM-4. However the performance for PAM-4 was limited by the distortion introduced by the EAM non-linearity. We also presented a real-time, DSP-free 128 Gb/s PAM-4 link with a silicon photonic transmitter using binary driven EAMs in a Mach-Zehnder interferometer (MZI) configuration. By combining two of such half-rate (53 GBd) transmitters in an integrated 2:1-serializer, improved 106 GBd PAM-4 performance is expected without needing to compensate the inherent modulator non-linearity and without requiring faster modulators or drivers. In this paper, we present a Silicon integrated 53 GBd PAM-4 TX as a candidate for integration into 106 GBd PAM-4 2:1 serialized TX. The presented TX consists of two EAMs in an MZI configuration, wirebonded to a low-power 55 nm 4-channel SiGe BiCMOS driver, operating at 1.5 pJ/b (excluding laser). With a reference receiver (RX), transmission at or below the KP4-FEC threshold is shown beyond 1km standard single-mode fiber (SSMF) and up to 2 km non-zero dispersion-shifted fiber (NZ-DSF) at 1565 nm. Furthermore, the integrated TX was combined with an Si-integrated RX consisting of the same EAM component, wirebonded to a 55 nm SiGe BiCMOS transimpedance amplifier (TIA). Both TX and RX were wirebonded on an RF-PCB, with electrical connectivity through transmission lines and 6-inch 50 GHz multi-coax cable connectors. With this electrically connectorized all-EAM TX and RX, PAM-4 link operation is shown up to 40 GBd at 3.9 pJ/b (excluding laser), without using DSP or equalization.

PDF Article
More Like This
53 GBd PAM-4 fully-integrated silicon photonics transmitter with a hybrid flip-chip bonded laser

Sanghwa Yoo, Heuk Park, Jyung Chan Lee, Eun Kyu Kang, Joon Young Huh, Gye Sul Cho, Haechung Kang, Dae Woong Moon, Jong Jin Lee, and Joon Ki Lee
Opt. Express 30(23) 41980-41998 (2022)

Monolithically integrated 112 Gbps PAM4 optical transmitter and receiver in a 45 nm CMOS-silicon photonics process

Thomas Baehr-Jones, Shahab Ardalan, Matthew Chang, Saman Jafarlou, Xavier Serey, George Zarris, Gabriel Thompson, Artsroun Darbinian, Brian West, Babak Behnia, Vesselin Velev, Yun Zhe Li, Katherine Roelofs, Wuchun Wu, Jim Mali, Jiahao Zhan, Noam Ophir, Chris Horng, Romanas Narevich, Fen Guan, Jinghui Yang, Hao Wu, Patrick Maupin, Rhys Manley, Yogi Ahuja, Ari Novack, Lei Wang, and Matthew Streshinsky
Opt. Express 31(15) 24926-24938 (2023)

50 GBd PAM4 transmitter with a 55nm SiGe BiCMOS driver and silicon photonic segmented MZM

Laurens Breyne, Hannes Ramon, Kasper Van Gasse, Michiel Verplaetse, Joris Lambrecht, Michael Vanhoecke, Joris Van Campenhout, Günther Roelkens, Peter Ossieur, Xin Yin, and Johan Bauwelinck
Opt. Express 28(16) 23950-23960 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved