Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 2,
  • pp. 303-318
  • (2020)

Impact of Polarization- and Mode-Dependent Gain on the Capacity of Ultra-Long-Haul Systems

Not Accessible

Your library or personal account may give you access

Abstract

Motivated by the recent interest in single-mode semiconductor optical amplifiers and multimode erbium-doped fiber amplifiers, we present a unified, comprehensive treatment of the effect of polarization- and mode-dependent gain (PDG and MDG) on the capacity of ultra-long-haul transmission systems. We study the problem using simulations of a multisection model, including the effects of PDG or MDG and polarization mode dispersion (PMD) or modal dispersion. We also analytically derive exact expressions for the capacity distribution of PDG-impaired single-mode systems. In agreement with previous work, we find that PDG and MDG cause fluctuations in capacity, which reduces average capacity and may cause outage. We show that the multimode systems studied, with at least $D = 14$ spatial/polarization modes, have sufficient modal diversity and frequency diversity to strongly suppress capacity fluctuations and reduce outage probability so that the outage capacity approaches the average capacity. We show that single-mode systems, by contrast, inherently provide low modal and frequency diversity, making them more prone to outage. To alleviate this problem, frequency diversity can be increased by artificially inserting PMD. Finally, we quantify the PDG/MDG requirements of optical amplifiers to ensure that the average capacity is close (within a 1-2 dB effective SNR loss) to the theoretical optimum. We show that these PDG/MDG requirements are stringent, especially considering the minimum-mean-square error linear equalizers implemented in typical multiple-input multiple-output receivers.

PDF Article
More Like This
Statistics of polarization dependent loss in an installed long-haul WDM system

Lynn E. Nelson, Cristian Antonelli, Antonio Mecozzi, Martin Birk, Peter Magill, Anton Schex, and Lutz Rapp
Opt. Express 19(7) 6790-6796 (2011)

Mode-dependent loss and gain: statistics and effect on mode-division multiplexing

Keang-Po Ho and Joseph M. Kahn
Opt. Express 19(17) 16612-16635 (2011)

Capacity limitations in fiber-optic communication systems as a result of polarization-dependent loss

Alon Nafta, Eado Meron, and Mark Shtaif
Opt. Lett. 34(23) 3613-3615 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.