Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 19,
  • pp. 5440-5449
  • (2020)

High-Resolution Optical Microresonator-Based Sensor Enabled by Microwave Photonic Sidebands Processing

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically and experimentally investigate the high-resolution performance of an optical microresonator-based sensor scheme incorporating microwave photonic sidebands processing. The optical power and phase profiles of the modulation sidebands are equalised to achieve ultrahigh-rejection RF notches with ultranarrow tip width in the electrical spectrum, where environmental changes are detected via the shift in the measurand dependent frequency of the ultradeep RF notch. The proposed structure demonstrates the ability to realise ultrahigh resolution sensing for any optical microresonator response with arbitrary coupling conditions, thus relieving strict fabrication requirements. Furthermore, factors that can disrupt the matching conditions during the dynamic sensing process are also discussed and resolved with the aid of the feedback compensation scheme which increases the resilience of the system against these interferences. As a proof-of-concept, a proposed sensing configuration comprising a dual-drive Mach–Zehnder modulator and a silicon-on-insulator microdisk resonator is demonstrated for temperature sensing. The measured temperature sensitivity is around 8.87 GHz/°C and a high rejection ratio of over 60 dB of the RF notch is successfully maintained with an ultranarrow notch tip width that makes up only 0.003% of the whole sensing operation range of 35 GHz. The temperature resolution is significantly improved by about 2500 times compared to the conventional method of direct monitoring of the optical spectrum.

PDF Article
More Like This
High-resolution microwave frequency measurement based on dynamic frequency-to-power mapping

Shijie Song, Suen Xin Chew, Linh Nguyen, and Xiaoke Yi
Opt. Express 29(26) 42553-42568 (2021)

Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter

Dongrui Xiao, Guoqing Wang, Feihong Yu, Shuaiqi Liu, Weijie Xu, Liyang Shao, Chao Wang, Hongyan Fu, Songnian Fu, Perry Ping Shum, Tao Ye, Zhangqi Song, and Weizhi Wang
Opt. Express 30(4) 5402-5413 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.