Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 18,
  • pp. 4906-4921
  • (2020)

PULSE: Optical Circuit Switched Data Center Architecture Operating at Nanosecond Timescales

Not Accessible

Your library or personal account may give you access

Abstract

We introduce PULSE, a sub- $\mu$ s optical circuit switched data centre network architecture controlled by distributed hardware schedulers. PULSE is a flat architecture that uses parallel passive coupler-based broadcast and select networks. We employ a novel transceiver architecture, for dynamic wavelength-timeslot selection, to achieve a reconfiguration time down to O(100 ps), establishing timeslots of O(10 ns). A novel scheduling algorithm that has a clock period of 2.3 ns performs multiple iterations to maximize throughput, wavelength usage and reduce latency, enhancing the overall performance. In order to scale, the single-hop PULSE architecture uses sub-networks that are disjoint by using multiple transceivers for each node in 64 node racks. At the reconfiguration circuit duration (epoch = 120 ns), the scheduling algorithm is shown to achieve up to 93% throughput and 100% wavelength usage of 64 wavelengths, incurring an average latency that ranges from 0.7–1.2 $\mu$ s with best-case 0.4 $\mu$ s median and 5 $\mu$ s tail latency, limited by the timeslot (20 ns) and epoch size (120 ns). We show how the 4096-node PULSE architecture allows up to 260 k optical channels to be re-used across sub-networks achieving a capacity of 25.6 Pbps with an energy consumption of 82 pJ/bit when using coherent receiver.

PDF Article
More Like This
High-port low-latency optical switch architecture with optical feed-forward buffering for 256-node disaggregated data centers

Nikos Terzenidis, Miltiadis Moralis-Pegios, George Mourgias-Alexandris, Konstantinos Vyrsokinos, and Nikos Pleros
Opt. Express 26(7) 8756-8766 (2018)

Scalable and low server-to-server latency data center network architecture based on optical packet inter-rack and intra-rack switching

Georgios Drainakis, Peristera Baziana, and Adonis Bogris
J. Opt. Commun. Netw. 15(11) 804-819 (2023)

PODCA: A Passive Optical Data Center Network Architecture

Maotong Xu, Chong Liu, and Suresh Subramaniam
J. Opt. Commun. Netw. 10(4) 409-420 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.