Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 17,
  • pp. 4730-4743
  • (2020)

Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach

Not Accessible

Your library or personal account may give you access

Abstract

A data-driven fiber channel modeling method based on deep learning (DL) is introduced in an optical communication system. In this study, bidirectional long short-term memory (BiLSTM) is selected from a diverse range of DL algorithms to perform fiber channel modeling for on–off keying and pulse amplitude modulation 4 signals. Compared with the conventional model-driven split-step Fourier (SSF)-based method, the proposed method yields similar results based on the comprehensive comparison of multiple characteristics associated with the generated optical signals, including the optical amplitude and phase waveforms in the time domain, optical spectrum components in the frequency domain, and eye diagrams after detection in the electrical domain. Additionally, the effects of multiple factors on the modeled fiber channel have also be investigated, including fiber length, fiber nonlinearity, dispersion, data pattern, pulse shaping, and sample rate. The satisfactory fitting results and acceptable mean square errors indicate that the approximate transfer function of the fiber channel is learned by the BiLSTM. Moreover, compared with repetitive iteration SSF, the computing time is significantly reduced by the BiLSTM owing to its independence on fiber length and insensitivity to data size and launch power. Our aim is to demonstrate the BiLSTM is comparable with the conventional model-driven SSF-based method for direct-detection optical fiber system. We think the proposed method could be a supplementary technique that can be used for the existing simulation system and could also be a potential option for future simulation methods.

PDF Article
More Like This
Impact of the input OSNR on data-driven optical fiber channel modeling

Gao Ye, Junjiang Xiang, Gai Zhou, Meng Xiang, Jianping Li, Yuwen Qin, and Songnian Fu
J. Opt. Commun. Netw. 15(2) 78-86 (2023)

Data-driven fiber model based on the deep neural network with multi-head attention mechanism

Yubin Zang, Zhenming Yu, Kun Xu, Minghua Chen, Sigang Yang, and Hongwei Chen
Opt. Express 30(26) 46626-46648 (2022)

Flexible optical fiber channel modeling based on a neural network module

Rui Jiang, Zhi Wang, Tao Jia, Ziling Fu, Chao Shang, and Chongqing Wu
Opt. Lett. 48(16) 4332-4335 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.