Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 14,
  • pp. 3602-3615
  • (2020)

Full-Spectrum Periodic Nonlinear Fourier Transform Optical Communication Through Solving the Riemann-Hilbert Problem

Open Access Open Access

Abstract

In this article, for the first time, a full-spectrum periodic nonlinear Fourier transform (NFT)-based communication system with the inverse transformation at the transmitter performed by using the solution of Riemann-Hilbert problem (RHP), is proposed and studied. The entire control over the nonlinear spectrum rendered by our technique, where we operate with two qualitatively different components of this spectrum represented, correspondingly, in terms of the main spectrum and the phases, allows us to design a time-domain signal tailored to the characteristics of the transmission channel. In the heart of our system is the RHP-based signal processing utilised to generate the time-domain signal from the modulated nonlinear spectrum. This type of NFT processing leads to a computational complexity that scales linearly with the number of time-domain samples, and we can process signal samples in parallel. In this article, we suggest the way of getting an exactly periodic signal through the correctly formulated RHP, and present evidence of the analogy between band-limited (in ordinary Fourier sense) signals and finite-band (in RHP sense) signals. Also, for the first time, we explain how to modulate the phases of individual periodic nonlinear modes. The performance of our transmission system is evaluated through numerical simulations in terms of bit error rate and Q $^2$ -factor dependencies on the transmission distance and power, and the results demonstrate the good potential of the approach.

PDF Article
More Like This
Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods

Morteza Kamalian, Jaroslaw E. Prilepsky, Son Thai Le, and Sergei K. Turitsyn
Opt. Express 24(16) 18353-18369 (2016)

Periodic nonlinear Fourier transform for fiber-optic communications, Part II: eigenvalue communication

Morteza Kamalian, Jaroslaw E. Prilepsky, Son Thai Le, and Sergei K. Turitsyn
Opt. Express 24(16) 18370-18381 (2016)

Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives

Sergei K. Turitsyn, Jaroslaw E. Prilepsky, Son Thai Le, Sander Wahls, Leonid L. Frumin, Morteza Kamalian, and Stanislav A. Derevyanko
Optica 4(3) 307-322 (2017)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved