Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 13,
  • pp. 3506-3518
  • (2020)

Parallel Modular Scheduler Design for Clos Switches in Optical Data Center Networks

Not Accessible

Your library or personal account may give you access

Abstract

As data centers enter the exascale computing era, the traffic exchanged between internal network nodes, increases exponentially. Optical networking is an attractive solution to deliver the high capacity, low latency, and scalable interconnection needed. Among other switching methods, packet switching is particularly interesting as it can be widely deployed in the network to handle rapidly-changing traffic of arbitrary size. Nanosecond-reconfigurable photonic integrated switch fabrics, built as multi-stage architectures such as the Clos network, are key enablers to scalable packet switching. However, the accompanying control plane needs to also operate on packet timescales. Designing a central scheduler, to control an optical packet switch in nanoseconds, presents a challenge especially as the switch size increases. To this end, we present a highly-parallel, modular scheduler design for Clos switches along with a proposed routing scheme to enable nanosecond scalable scheduling. We synthesize our scheduler as an application-specific integrated circuit (ASIC) and demonstrate scaling to a 256 × 256 size with an ultra-low scheduling delay of only 6.0 ns. In a cycle-accurate rack-scale network emulation, for this switch size, we show a minimum end-to-end latency of 30.8 ns and maintain nanosecond average latency up to 80% of input traffic load. We achieve zero packet loss and short-tailed packet latency distributions for all traffic loads and switch sizes. Our work is compared to state-of-the-art optical switches, in terms of scheduling delay, packet latency, and switch throughput.

PDF Article
More Like This
FPGA-based implementation of two-step schedulers for modular optical interconnection networks

Justine Cris Borromeo, Isabella Cerutti, Piero Castoldi, Rosula Reyes, and Nicola Andriolli
J. Opt. Commun. Netw. 13(5) 116-125 (2021)

Scheduling with Machine-Learning-Based Flow Detection for Packet-Switched Optical Data Center Networks

Lin Wang, Xinbo Wang, Massimo Tornatore, Kwang Joon Kim, Sun Me Kim, Dae-Ub Kim, Kyeong-Eun Han, and Biswanath Mukherjee
J. Opt. Commun. Netw. 10(4) 365-375 (2018)

Multihop Routing Enabled Packet Switching With QoS Guarantee in Optical Clos for Data Centers

Zhipeng Zhao, Bin Wu, Boyu Li, Jie Xiao, Shu Fu, and Da Liu
J. Opt. Commun. Netw. 10(6) 624-632 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.