Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 12,
  • pp. 3209-3213
  • (2020)

Dispersion-Managed Fiber Echo State Network Analogue With High (Including THz) Bandwidth

Not Accessible

Your library or personal account may give you access

Abstract

We propose a design for high (including THz) bandwidth neuromorphic signal processing based on fiber echo state network analogue and demonstrate through numerical modeling its efficiency for distortion mitigation in optical communications with high-order (including 1024-QAM) formats. This is achieved via all-optical implementation of masking and neural functionality by utilizing dispersion and nonlinear properties of the fiber. The design is flexible and format-transparent making it relevant for future communication systems. The model is simple to implement, as it requires only two attenuators and pumps in addition to a traditional nonlinear optical loop mirror (NOLM), and offers a vast range of optimization parameters.

PDF Article
More Like This
Fiber echo state network analogue for high-bandwidth dual-quadrature signal processing

Mariia Sorokina, Sergey Sergeyev, and Sergei Turitsyn
Opt. Express 27(3) 2387-2395 (2019)

Orthant-symmetric four-dimensional geometric shaping for fiber-optic channels via a nonlinear interference model

Bin Chen, Wei Ling, Yi Lei, Zhiwei Liang, and Xuwei Xue
Opt. Express 31(10) 16985-17002 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved