Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 11,
  • pp. 2961-2967
  • (2020)

Membrane III-V/Si DFB Laser Using Uniform Grating and Width-Modulated Si Waveguide

Open Access Open Access

Abstract

Membrane buried-heterostructure III-V/Si distributed feedback (DFB) lasers with a stopband-modulated cavity on a Si substrate have been developed. The membrane III-V layers with 230-nm thickness enable us to construct an optical supermode with a 220-nm-thick Si waveguide that is used in standard Si photonics platform. We employ a uniform grating and Si waveguide, in which Si waveguide width is modulated to control the center wavelength of the stopband. The cavity can be designed by controlling the modulation width and modulation length of Si waveguide. Therefore, it is easy to engineer and fabricate the laser cavity compared with the cavity using λ/4-phase shift grating. Output light from the cavity is coupled to Si waveguide through InP inverse taper waveguide, and then coupled to SiOx waveguide through Si inverse taper waveguide, which provides the 2-dB fiber coupling loss. We have demonstrated single-mode lasing by using Si waveguide, where its width is increased 80 nm at the center of the cavity. The threshold current and maximum fiber output power are 3 mA and 4 mW, respectively. By extending the active region length to 1 mm, 17-mW fiber coupled output power is obtained. High-temperature operation up to 130 °C is also obtained with a 1-mW fiber output power.

PDF Article
More Like This
Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide

Takuma Aihara, Tatsurou Hiraki, Koji Takeda, Takuro Fujii, Takaaki Kakitsuka, Tai Tsuchizawa, and Shinji Matsuo
Opt. Express 27(25) 36438-36448 (2019)

Integration of a high-efficiency Mach-Zehnder modulator with a DFB laser using membrane InP-based devices on a Si photonics platform

Tatsurou Hiraki, Takuma Aihara, Takuro Fujii, Koji Takeda, Yoshiho Maeda, Takaaki Kakitsuka, Tai Tsuchizawa, and Shinji Matsuo
Opt. Express 29(2) 2431-2441 (2021)

Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli
Opt. Express 19(11) 10317-10325 (2011)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.