Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 10,
  • pp. 2790-2798
  • (2020)

On the Performance of Digital Back Propagation in Spatial Multiplexing Systems

Not Accessible

Your library or personal account may give you access

Abstract

Nonlinear performance in spatial multiplexing systems is strongly determined by the interplay between differential mode delay, linear mode coupling, and Kerr nonlinearity. In this article we review and extend the analysis of different solution methods for the linear coupling operator in the coupled nonlinear Schrödinger equation for spatial multiplexed propagation. Numerical solution methods are compared for different operational regimes as determined by differential mode delay and linear mode coupling. Finally, we review and extend the study of digital methods to mitigate the Kerr nonlinearity for arbitrary levels of random linear mode coupling. For the first time, it is shown that in spatial multiplexing systems transmission performance can be improved by reducing the number of back propagated channels for non-negligible levels of differential mode delay.

PDF Article
More Like This
Polarization multiplexed 16QAM transmission employing modified digital back-propagation

Danish Rafique, Marco Mussolin, Jonas Mårtensson, Marco Forzati, Johannes K. Fischer, Lutz Molle, Markus Nölle, Colja Schubert, and Andrew D. Ellis
Opt. Express 19(26) B805-B810 (2011)

Joint intra and inter-channel nonlinear compensation scheme based on improved learned digital back propagation for WDM systems

Xinyu Chi, Chenglin Bai, Fan Yang, Qi Qi, Ruohui Zhang, Hengying Xu, Lishan Yang, Wanxiang Bi, Tianchi Chen, and Shunchang Bai
Opt. Express 32(4) 5095-5116 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.