Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 10,
  • pp. 2774-2781
  • (2020)

Y-00 Quantum-Noise Randomized Stream Cipher Using Intensity Modulation Signals for Physical Layer Security of Optical Communications

Open Access Open Access

Abstract

The Internet plays an essential role in modern societies and in the amount of sensitive data transported over the optical networks that shows its' importance has increased drastically. Therefore, it is critical to develop data protection schemes for optical fiber communications to provide user security. The Y-00 quantum-noise randomized stream cipher that employs extremely high-order modulation and restricts an attacker's interception of ciphertext is a practical candidate for providing data protection. In this article, we introduce the operation principle of the Y-00 cipher with respect to data encryption and decryption. The Y-00 cipher combines the mathematical encryption of multi-level signaling and physical randomness, and provides a high level of security to the physical layer of optical communications and a high communication performance. We also present the noise masking phenomenon of the Y-00 cipher with intensity modulation (IM). This noise masking is generated by shot noise, i.e., quantum noise and additive noise such as amplified spontaneous emission noise. The noise masking phenomenon fails an attacker's interception of the ciphertext. The secrecy of the IM Y-00 cipher is also discussed, and an approximate analytical solution is introduced for evaluating the probability of the attackers accurately guessing the ciphertext. Finally, the secrecy of a 1,000-km transmission system is experimentally demonstrated with the Y-00 cipher transceiver at data rate of 1.5-Gb/s using the derived analytical solution to deduce the high secrecy of the entire transmission system.

PDF Article
More Like This
Digital coherent PSK Y-00 quantum stream cipher with 217 randomized phase levels

Ken Tanizawa and Fumio Futami
Opt. Express 27(2) 1071-1079 (2019)

Ultra-long-haul digital coherent PSK Y-00 quantum stream cipher transmission system

Ken Tanizawa and Fumio Futami
Opt. Express 29(7) 10451-10464 (2021)

Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model

Haisong Jiao, Tao Pu, Jilin Zheng, Peng Xiang, and Tao Fang
Opt. Express 25(10) 10947-10960 (2017)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.