Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 9,
  • pp. 1916-1923
  • (2019)

Poly(D,L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber

Open Access Open Access

Abstract

We demonstrate that commercially available poly(D,L-lactic acid) (PDLLA) is a suitable material for the fabrication of biodegradable optical fibers with a standard heat drawing process. To do so we report on the chemical and optical characterization of the material. We address the influence of the polymer processing on the molecular weight and thermal properties of the polymer following the preparation of the polymer preforms and the fiber optic drawing process. We show that cutback measurements of the first optical fibers drawn from PDLLA return an attenuation coefficient as low as 0.11 dB/cm at 772 nm, which is the lowest loss reported this far for optical fibers drawn from bio-resorbable material. We also report on the dispersion characteristics of PDLLA, and we find that the thermo-optic coefficient is in the range of −10−4°C−1. Finally, we studied the degradation of PDLLA fibers in vitro, revealing that fibers with the largest diameter of 600 μm degrade faster than those with smaller diameters of 300 and 200 μm and feature more than 84% molecular weight loss over a period of 3 months. The evolution of the optical loss of the fibers as a function of time during immersion in phosphate-buffered saline indicates that these devices are potential candidates for use in photodynamic therapy-like application scenarios.

© 2019 OAPA

PDF Article
More Like This
Femtosecond laser induced periodic surface structure on poly-L-lactic acid

Shuhei Yada and Mitsuhiro Terakawa
Opt. Express 23(5) 5694-5703 (2015)

Prospective for biodegradable microstructured optical fibers

Alexandre Dupuis, Ning Guo, Yan Gao, Nicolas Godbout, Suzanne Lacroix, Charles Dubois, and Maksim Skorobogatiy
Opt. Lett. 32(2) 109-111 (2007)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.