Abstract

As the use of optical wireless communication (OWC) in industrial production environments is gaining interest, it is necessary to consider the application's challenging requirements with respect to reliability and low latency. In this paper, we first analyze the factors limiting coverage and reliability in OWC. We discuss increased drive signal powers with an optional nonlinear post-equalizer, which improves the signal-to-noise ratio by an additional 3.5 dB. Further, spanning a multiple-input multiple-output (MIMO) channel and exploiting antenna diversity is shown to significantly increase the reliability of the OWC physical layer. The insights obtained from a series of experiments lead to a real-time demonstration of OWC with intrinsically high coverage and reliability. These first real-time results of OWC in an industrial production environment are discussed and physical layer data rates of up to 150 Mb/s with an average latency of $< $ 1 ms are shown.

© 2019 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 5G PPP, “5G and the factories of the future,” White Paper, 2015. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
  2. V. Jungnickelet al., “A European view on the next generation optical wireless communication standard,” in Proc. IEEE Conf. Standards Commun. Netw., Tokyo, Japan, 2015, pp. 106–111.
  3. A. Willig, “Recent and emerging topics in wireless industrial communications: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 102–124, 2008.
  4. 5G PPP, “5G empowering vertical industries,” Vision Paper, 2016. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf
  5. P. Wilke Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.
  6. T. Chen, Z. Zhen, L. Liu, and W. Hu, “High-diversity space division multiplexing visible light communication utilizing a fisheye-lens-based imaging receiver,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2G.3.
  7. J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.
  8. S. Rajbhandariet al., “A multigigabit per second integrated multiple-input multiple-output VLC demonstrator,” J. Lightw. Technol., vol. 35, no. 20, pp. 4358–4365, 2017.
  9. P. Wilke Berenguer, D. Schulz, J. K. Fischer, and V. Jungnickel, “Distributed 8 × 6 MIMO experiments for optical wireless communications,” in Proc. Eur. Conf. Exhibi. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.2.B.3.
  10. P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.
  11. P. Wilke Berengueret al., “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, Paper Th.1.B.1.
  12. K. Asatani and T. Kimura, “Analyses of LED nonlinear distortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 125–133, 1978.
  13. K. Asatani and T. Kimura, “Linearization of LED nonlinearity by predistortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 133–138, 1978.
  14. R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. 865–875, 2012.
  15. G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photon. Technol. Lett., vol. 25, no. 16, pp. 1597–1600, 2013.
  16. H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .
  17. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.
  18. J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, 2000.
  19. S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., Los Angeles, CA, USA, 2006, pp. 146–157.
  20. I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control for IEEE 802.11,” in Proc. 2nd Int. Workshop Mobility Manage. Wireless Access Protocols, Philadelphia, PA, USA, 2004, pp. 10–18.
  21. L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.
  22. J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame rate selection for visible light networks,” in Proc. IEEE Conf. Comput. Commun., Kowloon, Hong Kong, 2015, pp. 2434–2442.
  23. Cree, Cree XLamp XP-E LEDs, Durham, NC, USA (2018). [Online]. Available: http://www.cree.com/led-components/media/documents/XLampXPE.pdf
  24. Hamamatsu, Hamamatsu S6801, S6968 Si PIN photodiodes, Shizuoka, Japan (2018). [Online]. Available: http://www.hamamatsu.com/resources/pdf/ssd/s6801_etc_kpin1046e.pdf
  25. Hamamatsu, Hamamatsu S2506, S26775, S6967 Si PIN photodiodes, Shizuoka, Japan (2018). [Online]. Available: http://www.hamamatsu.com/resources/pdf/ssd/s2506-02_etc_kpin1048e.pdf
  26. H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822–839, 2003.
  27. D. C. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, 1972.
  28. R. D. Nowak, “Penalized least squares estimation of Volterra filters and higher order statistics,” IEEE Trans. Signal Process., vol. 46, no. 2, pp. 419–428, 1998.
  29. C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, 2016.
  30. Unified High-Speed Wireline-Based Home Networking Transceivers—System Architecture and Physical Layer Specification, ITU-T Rec. G.9960, Int. Telecommun. Union, Geneva, Switzerland, 2015.
  31. Unified High-Speed Wireline-Based Home Networking Transceivers—Data Link Layer Specification, ITU-T Rec. G.9961, Int. Telecommun. Union, Geneva, Switzerland, 2015.
  32. Osram, SFH 4715AS IR LED, Munich, Germany (2016). [Online]. Available: https://dammedia.osram.info/media/resource/hires/osram-dam-5580411/SFH%204715AS_EN.pdf

2018 (1)

P. Wilke Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

2017 (1)

S. Rajbhandariet al., “A multigigabit per second integrated multiple-input multiple-output VLC demonstrator,” J. Lightw. Technol., vol. 35, no. 20, pp. 4358–4365, 2017.

2016 (1)

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, 2016.

2015 (1)

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

2014 (1)

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .

2013 (1)

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photon. Technol. Lett., vol. 25, no. 16, pp. 1597–1600, 2013.

2012 (1)

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. 865–875, 2012.

2008 (1)

A. Willig, “Recent and emerging topics in wireless industrial communications: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 102–124, 2008.

2003 (1)

H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822–839, 2003.

2000 (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, 2000.

1998 (1)

R. D. Nowak, “Penalized least squares estimation of Volterra filters and higher order statistics,” IEEE Trans. Signal Process., vol. 46, no. 2, pp. 419–428, 1998.

1979 (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

1978 (2)

K. Asatani and T. Kimura, “Analyses of LED nonlinear distortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 125–133, 1978.

K. Asatani and T. Kimura, “Linearization of LED nonlinearity by predistortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 133–138, 1978.

1972 (1)

D. C. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, 1972.

Almeroth, K.

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

Asatani, K.

K. Asatani and T. Kimura, “Analyses of LED nonlinear distortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 125–133, 1978.

K. Asatani and T. Kimura, “Linearization of LED nonlinearity by predistortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 133–138, 1978.

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Basnayaka, D. A.

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, 2016.

Belding, E.

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

Bhargava, V. K.

H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822–839, 2003.

Bharghavan, V.

S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., Los Angeles, CA, USA, 2006, pp. 146–157.

Cai, S. Z.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, 2000.

Chen, C.

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, 2016.

Chen, T.

T. Chen, Z. Zhen, L. Liu, and W. Hu, “High-diversity space division multiplexing visible light communication utilizing a fisheye-lens-based imaging receiver,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2G.3.

Chi, N.

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.

Chu, D. C.

D. C. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, 1972.

Deek, L.

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

Elgala, H.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. 865–875, 2012.

Fischer, J. K.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

P. Wilke Berenguer, D. Schulz, J. K. Fischer, and V. Jungnickel, “Distributed 8 × 6 MIMO experiments for optical wireless communications,” in Proc. Eur. Conf. Exhibi. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.2.B.3.

Garcia-Villegas, E.

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Haas, H.

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, 2016.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. 865–875, 2012.

Haratcherev, I.

I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control for IEEE 802.11,” in Proc. 2nd Int. Workshop Mobility Manage. Wireless Access Protocols, Philadelphia, PA, USA, 2004, pp. 10–18.

Hellwig, P.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

Hilt, J.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

Hu, W.

T. Chen, Z. Zhen, L. Liu, and W. Hu, “High-diversity space division multiplexing visible light communication utilizing a fisheye-lens-based imaging receiver,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2G.3.

Huang, X.

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.

Jungnickel, V.

P. Wilke Berenguer, D. Schulz, J. K. Fischer, and V. Jungnickel, “Distributed 8 × 6 MIMO experiments for optical wireless communications,” in Proc. Eur. Conf. Exhibi. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.2.B.3.

V. Jungnickelet al., “A European view on the next generation optical wireless communication standard,” in Proc. IEEE Conf. Standards Commun. Netw., Tokyo, Japan, 2015, pp. 106–111.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

Kahn, J. M.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, 2000.

Kimura, T.

K. Asatani and T. Kimura, “Linearization of LED nonlinearity by predistortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 133–138, 1978.

K. Asatani and T. Kimura, “Analyses of LED nonlinear distortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 125–133, 1978.

Lagendijk, R.

I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control for IEEE 802.11,” in Proc. 2nd Int. Workshop Mobility Manage. Wireless Access Protocols, Philadelphia, PA, USA, 2004, pp. 10–18.

Langendoen, K.

I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control for IEEE 802.11,” in Proc. 2nd Int. Workshop Mobility Manage. Wireless Access Protocols, Philadelphia, PA, USA, 2004, pp. 10–18.

Lee, S.-J.

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

Letaief, K. B.

H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822–839, 2003.

Liu, L.

T. Chen, Z. Zhen, L. Liu, and W. Hu, “High-diversity space division multiplexing visible light communication utilizing a fisheye-lens-based imaging receiver,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2G.3.

Lu, S.

S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., Los Angeles, CA, USA, 2006, pp. 146–157.

Mesleh, R.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. 865–875, 2012.

Minn, H.

H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822–839, 2003.

Nowak, R. D.

R. D. Nowak, “Penalized least squares estimation of Volterra filters and higher order statistics,” IEEE Trans. Signal Process., vol. 46, no. 2, pp. 419–428, 1998.

Qian, H.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .

Rajbhandari, S.

S. Rajbhandariet al., “A multigigabit per second integrated multiple-input multiple-output VLC demonstrator,” J. Lightw. Technol., vol. 35, no. 20, pp. 4358–4365, 2017.

Schulz, D.

P. Wilke Berenguer, D. Schulz, J. K. Fischer, and V. Jungnickel, “Distributed 8 × 6 MIMO experiments for optical wireless communications,” in Proc. Eur. Conf. Exhibi. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.2.B.3.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

Shi, J.

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.

Sips, H.

I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control for IEEE 802.11,” in Proc. 2nd Int. Workshop Mobility Manage. Wireless Access Protocols, Philadelphia, PA, USA, 2004, pp. 10–18.

Siuzdak, J.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photon. Technol. Lett., vol. 25, no. 16, pp. 1597–1600, 2013.

Stepniak, G.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photon. Technol. Lett., vol. 25, no. 16, pp. 1597–1600, 2013.

Tao, L.

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.

Wang, Y.

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.

Wilke Berenguer, P.

P. Wilke Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

P. Wilke Berenguer, D. Schulz, J. K. Fischer, and V. Jungnickel, “Distributed 8 × 6 MIMO experiments for optical wireless communications,” in Proc. Eur. Conf. Exhibi. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.2.B.3.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

P. Wilke Berengueret al., “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, Paper Th.1.B.1.

Willig, A.

A. Willig, “Recent and emerging topics in wireless industrial communications: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 102–124, 2008.

Wong, S. H. Y.

S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., Los Angeles, CA, USA, 2006, pp. 146–157.

Wu, G.

J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame rate selection for visible light networks,” in Proc. IEEE Conf. Comput. Commun., Kowloon, Hong Kong, 2015, pp. 2434–2442.

Yang, H.

S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., Los Angeles, CA, USA, 2006, pp. 146–157.

Yao, S. J.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .

Zhang, J.

J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame rate selection for visible light networks,” in Proc. IEEE Conf. Comput. Commun., Kowloon, Hong Kong, 2015, pp. 2434–2442.

Zhang, X.

J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame rate selection for visible light networks,” in Proc. IEEE Conf. Comput. Commun., Kowloon, Hong Kong, 2015, pp. 2434–2442.

Zhen, Z.

T. Chen, Z. Zhen, L. Liu, and W. Hu, “High-diversity space division multiplexing visible light communication utilizing a fisheye-lens-based imaging receiver,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2G.3.

Zhou, T.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .

Zwierko, P.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photon. Technol. Lett., vol. 25, no. 16, pp. 1597–1600, 2013.

Comput. Netw. (1)

L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, “A practical framework for 802.11 MIMO rate adaptation,” Comput. Netw., vol. 83, pp. 332–348, 2015.

IEEE J. Opt. Commun. Netw. (1)

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. 865–875, 2012.

IEEE J. Sel. Areas Commun. (1)

P. Wilke Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

IEEE J. Solid-State Circuits (2)

K. Asatani and T. Kimura, “Analyses of LED nonlinear distortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 125–133, 1978.

K. Asatani and T. Kimura, “Linearization of LED nonlinearity by predistortions,” IEEE J. Solid-State Circuits, vol. SC-13, no. 1, pp. 133–138, 1978.

IEEE Photon. J. (1)

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photon. J., vol. 6, no. 4, 2014, Art. no. .

IEEE Photon. Technol. Lett. (1)

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photon. Technol. Lett., vol. 25, no. 16, pp. 1597–1600, 2013.

IEEE Trans. Commun. (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, 2000.

IEEE Trans. Ind. Informat. (1)

A. Willig, “Recent and emerging topics in wireless industrial communications: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 102–124, 2008.

IEEE Trans. Inf. Theory (1)

D. C. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, 1972.

IEEE Trans. Signal Process. (1)

R. D. Nowak, “Penalized least squares estimation of Volterra filters and higher order statistics,” IEEE Trans. Signal Process., vol. 46, no. 2, pp. 419–428, 1998.

IEEE Trans. Wireless Commun. (1)

H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822–839, 2003.

J. Lightw. Technol. (2)

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, 2016.

S. Rajbhandariet al., “A multigigabit per second integrated multiple-input multiple-output VLC demonstrator,” J. Lightw. Technol., vol. 35, no. 20, pp. 4358–4365, 2017.

Proc. IEEE (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Other (17)

T. Chen, Z. Zhen, L. Liu, and W. Hu, “High-diversity space division multiplexing visible light communication utilizing a fisheye-lens-based imaging receiver,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2G.3.

J. Shi, X. Huang, Y. Wang, L. Tao, and N. Chi, “Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper Th.2.3.3.

P. Wilke Berenguer, D. Schulz, J. K. Fischer, and V. Jungnickel, “Distributed 8 × 6 MIMO experiments for optical wireless communications,” in Proc. Eur. Conf. Exhibi. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.2.B.3.

P. Wilke Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Global LIFI Congr., Paris, France, 2018, pp. 1–5.

P. Wilke Berengueret al., “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, Paper Th.1.B.1.

5G PPP, “5G empowering vertical industries,” Vision Paper, 2016. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf

5G PPP, “5G and the factories of the future,” White Paper, 2015. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf

V. Jungnickelet al., “A European view on the next generation optical wireless communication standard,” in Proc. IEEE Conf. Standards Commun. Netw., Tokyo, Japan, 2015, pp. 106–111.

Unified High-Speed Wireline-Based Home Networking Transceivers—System Architecture and Physical Layer Specification, ITU-T Rec. G.9960, Int. Telecommun. Union, Geneva, Switzerland, 2015.

Unified High-Speed Wireline-Based Home Networking Transceivers—Data Link Layer Specification, ITU-T Rec. G.9961, Int. Telecommun. Union, Geneva, Switzerland, 2015.

Osram, SFH 4715AS IR LED, Munich, Germany (2016). [Online]. Available: https://dammedia.osram.info/media/resource/hires/osram-dam-5580411/SFH%204715AS_EN.pdf

J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame rate selection for visible light networks,” in Proc. IEEE Conf. Comput. Commun., Kowloon, Hong Kong, 2015, pp. 2434–2442.

Cree, Cree XLamp XP-E LEDs, Durham, NC, USA (2018). [Online]. Available: http://www.cree.com/led-components/media/documents/XLampXPE.pdf

Hamamatsu, Hamamatsu S6801, S6968 Si PIN photodiodes, Shizuoka, Japan (2018). [Online]. Available: http://www.hamamatsu.com/resources/pdf/ssd/s6801_etc_kpin1046e.pdf

Hamamatsu, Hamamatsu S2506, S26775, S6967 Si PIN photodiodes, Shizuoka, Japan (2018). [Online]. Available: http://www.hamamatsu.com/resources/pdf/ssd/s2506-02_etc_kpin1048e.pdf

S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., Los Angeles, CA, USA, 2006, pp. 146–157.

I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate control for IEEE 802.11,” in Proc. 2nd Int. Workshop Mobility Manage. Wireless Access Protocols, Philadelphia, PA, USA, 2004, pp. 10–18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.