Abstract

The power scaling of single mode fiber lasers and amplifiers, due to the wide area of applications, has been the subject of great interest for many years. Increasing the mode area seems to be the obvious way to scale up the output power level from the single emitter if you consider well-known limitations like nonlinear effects, material damage threshold or thermal lensing. The nanostructurization of the fiber core is a method to control precisely optical properties of the active fiber. This method allows to design and develop the fiber with the core of any arbitrary defined refractive index distribution, with precision not available with other known fiber technology. The nanostructurization also open up an opportunity to incorporate simultaneously various active and non-active glasses into the fiber core. Those advantages can be used to fabricate the new class of fibers for laser applications. Here we show ytterbium doped phosphate single-mode fiber with nanostructured core, which is the first proof-of-concept of active fiber with entirely nanostructured core area.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription