Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 20,
  • pp. 5273-5281
  • (2019)

Sparsity-Aware Nonlinear Equalization With Greedy Algorithms for LED-Based Visible Light Communication Systems

Not Accessible

Your library or personal account may give you access

Abstract

The nonlinearity of light emitting diode (LED) in visible light communication (VLC) systems is considered as one major limiting factor that deteriorates the systems’ performance. In this paper, the nonlinear equalization in VLC systems is deemed to be a sparse recovery problem. Three different greedy sparse recovery algorithms, namely matching pursuit (MP), orthogonal MP (OMP), and regularized OMP (ROMP) are employed in constructing the sparsity-aware nonlinear equalizer for LED-based VLC systems. By adopting these greedy algorithms, the number of kernels in the nonlinear equalizer can be significantly reduced with minor performance loss, which enables low-complexity and high-performance nonlinear equalization. The performance of the proposed sparsity-aware nonlinear equalizers is investigated experimentally in orthogonal frequency division multiplexing (OFDM) based VLC systems with commercially available red-green-blue LEDs. The results show that, with the help of greedy sparse recovery algorithms, the number of kernels in nonlinear equalization can be reduced by 32.5%∼62.5% for only 0.5-dB signal-to-noise ratio loss. The compatibility of the proposed sparsity-aware nonlinear equalizer in a ∼1 Gbit/s adaptive bit-power loading OFDM VLC system is also experimentally demonstrated. The ROMP-based nonlinear equalizer is found to be the best choice that offers the optimal balance between performance and complexity, which achieves almost the same performance as the conventional Volterra time domain nonlinear equalizer in OFDM VLC systems with approximately halved number of kernels.

© 2019 IEEE

PDF Article
More Like This
200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit

Yizhan Dai, Xiao Chen, Xingqi Yang, Zhijian Tong, Zihao Du, Weichao Lyu, Chao Zhang, Hao Zhang, Haiwu Zou, Yongxin Cheng, Dongfang Ma, Jian Zhao, Zejun Zhang, and Jing Xu
Opt. Express 29(20) 32228-32243 (2021)

Low-complexity sparse absolute-term based nonlinear equalizer for C-band IM/DD systems

Junwei Zhang, Zhenrui Lin, Xiong Wu, Jie Liu, Alan Pak Tao Lau, Changjian Guo, Chao Lu, and Siyuan Yu
Opt. Express 29(14) 21891-21901 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved